
https://doi.org/10.1007/s10489-021-02911-4

Providing upgrade plans for third-party libraries: a recommender
system using migration graphs

Riccardo Rubei1 ·Davide Di Ruscio1 · Claudio Di Sipio1 · Juri Di Rocco1 · Phuong T. Nguyen1

Accepted: 7 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
During the development of a software project, developers often need to upgrade third-party libraries (TPLs), aiming to keep
their code up-to-date with the newest functionalities offered by the used libraries. In most cases, upgrading used TPLs is
a complex and error-prone activity that must be carefully carried out to limit the ripple effects on the software project that
depends on the libraries being upgraded. In this paper, we propose EvoPlan as a novel approach to the recommendation of
different upgrade plans given a pair of library-version as input. In particular, among the different paths that can be possibly
followed to upgrade the current library version to the desired updated one, EvoPlan is able to suggest the plan that can
potentially minimize the efforts being needed to migrate the code of the clients from the library’s current release to the target
one. The approach has been evaluated on a curated dataset using conventional metrics used in Information Retrieval, i.e.,
precision, recall, and F-measure. The experimental results show that EvoPlan obtains an encouraging prediction performance
considering two different criteria in the plan specification, i.e., the popularity of migration paths and the number of open
and closed issues in GitHub for those projects that have already followed the recommended migration paths.

Keywords Recommendation systems · API migration · Data mining

1 Introduction

When dealing with certain coding tasks, developers usually
make use of third-party libraries (TPLs) that provide
the desired functionalities. Third-party libraries offer a
wide range of operations, e.g., database management, file
utilities, Website connection, to name a few. Their reuse

� Davide Di Ruscio
davide.diruscio@univaq.it

Riccardo Rubei
riccardo.rubei@graduate.univaq.it

Claudio Di Sipio
claudio.disipio@graduate.univaq.it

Juri Di Rocco
juri.dirocco@univaq.it

Phuong T. Nguyen
phuong.nguyen@univaq.it

1 Department of Information Engineering, Computer Sci-
ence and Mathematics, Università degli studi dell’Aquila,
L’Aquila, Italy

allows developers to exploit a well-founded infrastructure,
without reinventing the wheel, which eventually helps save
time as well as increase productivity. However, TPLs evolve
over the course of time, and API functions can either be
added or removed, aiming to make the library become more
efficient/effective, as well as to fix security issues.

Upgrading clients’ code from a library release to a newer
one can be a daunting and time-consuming task, especially
when the APIs being upgraded introduce breaking changes
that make the client fail to compile or introduce behavioral
changes into it [27]. Thus, managing TPLs and keeping
them up-to-date becomes a critical practice to minimize the
technical debt [3].

In order to upgrade a client C from a starting library ver-
sion lvi

to a target one lvt , the developer needs to understand
both versions’ documentation deeply, as well as to choose
the right matching between corresponding methods.

Things become even more complicated when several
subsequent versions of the library of interest l have been
released from vi to vt . In such cases, developers who
want to reduce the technical debts, which have been
accumulated due to libraries that have not been upgraded
yet, have first to decide the upgrade plan that has to be
applied, i.e., how to go from lvi

to lvt since many possible

/ Published online: 31 January 2022

Applied Intelligence (2021) 52:12000–12015

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02911-4&domain=pdf
https://orcid.org/0000-0001-9622-5949
https://orcid.org/0000-0002-5077-6793
http://orcid.org/0000-0001-9872-9542
https://orcid.org/0000-0002-7909-3902
https://orcid.org/0000-0002-3666-4162
mailto: davide.diruscio@univaq.it
mailto: riccardo.rubei@graduate.univaq.it
mailto: claudio.disipio@graduate.univaq.it
mailto: juri.dirocco@univaq.it
mailto: phuong.nguyen@univaq.it


paths might be followed. In such cases, it is essential to
have proper machinery to assist developers in choosing
suitable upgrade plans to potentially reduce the efforts
that are needed to migrate the client project C under
development. It is possible to minimize migration efforts
by identifying upgrade plans, which similar projects have
already performed, and thus, by relying on the experiences
of already upgraded clients. In this way, developers have the
availability of supporting material, e.g., documentation, and
snippets of code examples that can be exploited during the
migration phases.

In the context of open-source software, developing new
systems by reusing existing components raises relevant
challenges in: (i) searching for relevant modules; and (ii)
adapting the selected components to meet some pre-defined
requirements. To this end, recommender systems in soft-
ware engineering have been developed to support develop-
ers in their daily tasks [8, 23]. Such systems have gained
traction in recent years as they are able to provide deve-
lopers with a wide range of useful items, including code snip-
pets [20], tags/topics [7, 9], third-party libraries [19], doc-
umentation [22, 24], to mention but a few. In the CROSS-
MINER project [8], we conceptualized various techniques
and tools for extracting knowledge from open source com-
ponents to provide tailored recommendations to developers,
helping them complete their current development tasks.

In this work, we propose EvoPlan, a recommender
system to provide upgrade plans for TPLs. By exploiting
the experience of other projects that have already performed
similar upgrades and migrations, EvoPlan recommends
the plan that should be considered to upgrade from the
current library version to the desired one. A graph-based
representation is inferred by analyzing GitHub repositories
and their pom.xml files. During this phase, EvoPlan assigns
weights representing the number of client projects that
have already performed a specific upgrade. Afterwards,
the system employs a shortest-path algorithm to minimize
the number of upgrade steps considering such weights. It
eventually retrieves multiple upgrade plans to the user with
the target version as well as all the intermediate passages.

To the best of our knowledge, there exist no tools that
provide this type of recommendations. Thus, we cannot
compare EvoPlan with any baselines but evaluate it by
using metrics commonly used in information retrieval
applications, i.e., precision, recall, and F-measure.

Furthermore, we also evaluate the correlation between
GitHub1 issues data and the suggested upgrade plans.

In this sense, our work has the following contributions:

– Gathering and storing of migration data: Using NEO4J

Java Driver,2 EvoPlan stores the extracted data in a
persistent and flexible data structure;

1https://github.com/
2https://github.com/neo4j/neo4j-java-driver

– Recommendation of an upgrade plan list: Considering
the number of clients, EvoPlan suggests the most
common upgrade plans that are compliant with those
that have been accepted by the developers community
at large;

– Modularity and flexible architecture: The proposed
system can be seen as both an external module
integrable into other approaches and a completely
stand-alone tool that can be customized by end users;

– Automated evaluation and replication package avail-
ability: The performance of EvoPlan has been evaluated
by employing the widely used ten-fold cross-validation
technique. Last but not least, we make the EvoPlan
replication package available online to facilitate future
research.3

The paper is structured as follows. Section 2 presents
a motivating example and existing migration tools in the
literature. Furthermore, in this section we also highlight
the open challenges in the domain. Section 3 introduces
EvoPlan, the proposed approach to the recommendation of
third-party library upgrades. In Section 4, we present the
performed evaluation process. The results obtained from the
empirical evaluation are presented in Section 5 together with
possible threats to validity. The related work is reviewed
in Section 6. Finally, we conclude the paper and envisage
future work in Section 7.

2Motivations and background

TPLs offer several tailored functionalities, and invoking
them allows developers to make use of a well-founded
infrastructure, without needing to re-implementing from
scratch [19]. Eventually, this helps save time as well as
increase productivity. However, as libraries evolve over the
course of time, it is necessary to have a proper plan to
upgrade them in the dependent software projects once the
libraries have been updated. So far, various attempts have
been made to tackle this issue. In this section, we introduce
two motivating examples, and recall some notable relevant
work as a base for further presentation.

2.1 Explanatory examples

This section discusses two real-world situations that
developers must cope with during the TLPs migration task,
i.e., code refactoring and vulnerable dependencies handling.
In the first place, it is essential to consider different TPL
releases that are conformed to the semantic versioning
format.4 A standard version string follows the pattern X.Y,
in which X represents the major release and Y represents the

3https://github.com/MDEGroup/EvoPlan
4https://semver.org/

Providing upgrade plans for third-party libraries: a recommender system... 12001

https://github.com/
https://github.com/neo4j/neo4j-java-driver
https://github.com/MDEGroup/EvoPlan
https://semver.org/


Listing 1 log4j version 1.2

minor one. Sometimes, releases can include a patch version
Z, resulting in the final string X.Y.Z.

We present an explanatory example related to log4j,5 a
widely used Java logging library. When it is upgraded from
version 1.2 to version 1.3, as shown in Listing 1 and Listing
2, respectively, a lot of internal changes happened which
need to be carefully documented.6 As it can be noticed, the
main change affects the Category class which is replaced
by the Logger class. Furthermore, all the former methods
that were used by the deprecated class cause several failures
at the source code level. For instance, the setPriority
method is replaced by setLevel in the new version.

Though this is a very limited use case, it suggests that
the code refactoring that takes place during the migration is
an error-prone activity even for a single minor upgrade, i.e.,
from version 1.2 to version 1.3. Additionally, the complexity
dramatically grows in the case of a major release as it
typically requires extra efforts rather than a minor one
which are not welcome by the majority of developers [14].
Considering such context, the reduction of the time needed
for a single migration step, even a minor one, is expected to
improve the overall development process.

Concerning vulnerable dependencies, GitHub Depend-
abot7 provides weekly security alert digests that high-
light possible security issues for outdated dependencies of
a repository, which can be of different languages, e.g.,
Python, Java, JavaScript.8 An example of a Dependabot
report is shown in Fig. 1.

As shown in Fig. 1, Dependabot suggests possible TPL
upgrades to solve vulnerabilities in the given project. For
instance, the guava dependency seems to be outdated,
and thus the system automatically suggests jumping to
the latest version, i.e., 24.1.1. Though this alert can
raise awareness of this evolution, it does not offer any
concrete recommendations on how to perform the actual
migration steps. In some cases, the bot does not provide
any recommended version to update the project, e.g., for
the log4j dependence. In this respect, we see that there
is an urgent need for providing recommendations of the

5https://logging.apache.org/log4j/
6http://articles.qos.ch/preparingFor13.html
7https://dependabot.com/blog/github-security-alerts/
8https://dependabot.com/#languages

Listing 2 log4j version 1.3

most suitable plan, so as to upgrade the library, as this can
significantly reduce the migration effort.

2.2 Existing techniques

This section reviews some relevant work that copes with the
migration problem.

Meditor [30] is a tool aiming to identify migration-
related (MR) changes within commits and map them at the
level of source code with a syntactic program differencing
algorithm. To this end, the tool mines GitHub projects
searching for MR updates in the pom.xml file and check
their consistency with the WALA framework.9

Hora and Valente propose Apiwave [11], a system that
excerpts information about libraries’ popularity directly
from mined GitHub project’s history. Afterwards, it can
measure the popularity of a certain TLP by considering the
import statement removal or addition.

Teyton et al. [26] propose an approach that discovers
migrations among different TLPs and stores them in a graph
format. A token-based filter is applied on pom.xml files to
extract the name and the version of the library from the
artifactid tag. The approach evetually exhibits four different
visual patterns that consider both ingoing and outgoing
edges to highlight the most popular target.

RAPIM [2] employs a tailored machine learning model
to identify and recommend API mappings learned from
previously migration changes. Given two TPLs as input,
RAPIM extracts valuable method descriptions from their
documentation using text engineering techniques and
encode them in feature vectors to enable the underpinning
machine learning model.

Diff-CatchUp [29] has been conceived with the aim
of proposing usage examples to support the migration of
reusable software components. The tool makes use of the
UMLDiff algorithm [28] to identify all relevant source
code refactorings. Then, a heuristic approach is adopted to
investigate the design-model of the evolved component and
retrieve a customizable ranked list of suggestions.

Collie et al. recently proposed the M3 tool [4] to
support a semantic-based migration of C libraries. To
this end, the system synthesizes a behavioral model of
the input project by relying on the LLVM intermediate

9https://github.com/wala/WALA

R. Rubei et al.12002

https://logging.apache.org/log4j/
http://articles.qos.ch/preparingFor13.html
https://dependabot.com/blog/github-security-alerts/
https://dependabot.com/#languages
https://github.com/wala/WALA


Fig. 1 GitHub Dependabot alert

representation.10 Given a pair of source and target TLPs, the
tool generates abstract patterns that are used to perform the
actual migration.

Table 1 summarizes the features of the above-ment-
ioned approaches by considering the different tasks involved
in migration processes by starting with the discovery of
possible migration changes up to embedding them directly
into the source code as explained below.

– Inferring migration: To extract migration-related infor-
mation, tools can analyze existing projects’ artifacts,
i.e., commits, pom.xml file, or tree diff. This is the first
step of the whole migration process.

– Incremental plan: The majority of the existing
approaches perform the migration just by considering
the latest version of a TLP. This could increase the over-
all effort needed to perform the actual migration, i.e.,
developers suffer from accumulated technical debt. In
contrast, considering a sequence of intermediate migra-
tion steps before going to the final one can reduce such
refactoring.

– Popularity: This is the number of client projects that
make use of a certain library. In other words, if a TLP
appears in the pom.xml file or in the import statement,
its popularity is increased.

– GitHub issues: As an additional criterion, the migration
process can include data from GitHub issues that may
include relevant information about TLPs migration.
Thus, we consider them as a possible source of
migration-related knowledge.

– Upgrading: This feature means that the tool supports
the upgrading of a TLP from an older version to a newer
one. For instance, the migration described in Section 2.1
falls under this class of migration.

10https://llvm.org/

– Replacement: Differently from upgrading, replacement
involves the migration from a library to a different one
that exposes the same functionalities.

– Applying migration: It represents the final step of
the migration process in which the inferred migration
changes are actually integrated into the project.

2.3 Dimensions to be further explored

Even though several approaches successfully cope with
TPL migration, there are still some development dimensions
that need to be further explored. However, providing an
exhaustive analysis is out of the scope of this section. Thus,
we limit ourselves to identify some of them by carefully
investigating the approaches summarized in Table 1. The
elicited dimensions are the following ones:

– D1: Upgrading the same library. Almost all of the
presented approaches apart from Meditor, focus on
replacing libraries and very few support the upgrades
of already included ones (see columns Upgrading and
Replacement in Table 1).

– D2: Varying the migration data sources. During the
inferring migration phase, strategies to obtain migra-
tion-related data play a fundamental role in the overall
process. A crucial challenge should be investigating
new sources of information besides the well-known
sources e.g., Bug reports, Stack Overflow posts, and
GitHub issues.

– D3: Aggregating different concepts. The entire migra-
tion process is a complex task and involves notions
belonging to different domains. For instance, GitHub
issues could play a relevant role in the migration pro-
cess. A recent work [17] shows that the more comments
are included in the source code, the lesser is the time
needed to solve an issue. Neil et al.[18] extracted secu-
rity vulnerabilities from issues and bug reports that
could affect library dependencies.

– D4: Identification of the upgrade plan. Existing
approaches identify and apply migrations by taking as
input the explicit specification of the target version
of the library that has to be upgraded. Providing
developers with insights about candidate upgrade
plans that might reduce the migration efforts can
represent valuable support to the overall upgrade
process.

In the present work we aim to explore and propose
solutions for the dimensions D1 and D4 by providing
multiple possible upgrade plans given the request of
upgrading a given library to target a specific target version.
Furthermore, we also perform an initial investigation on
the D2 and D3 dimensions, relying on GitHub issues.

Providing upgrade plans for third-party libraries: a recommender system... 12003

https://llvm.org/


Table 1 Main features of TLPs migration systems

System Inferring
migration

Incremental
plan

Popularity GitHub
issues

Upgrading Replacement Applying
migration

Meditor [30]

Apivawe [11]

Graph Mining [26]

RAPIM [2]

Diff-CatchUp [29]

M3 [4]

EvoPlan

As it can be seen in Table 1, EvoPlan covers five
out of the seven considered features. In particular, our
approach is able to infer migration, make use of incremental
plan by considering the popularity and issues, so as to
eventually recommend an upgrade plan. Compared to the
existing tools, EvoPlan tackles most of the issues previously
presented.

3 Proposed approach

In this paper we propose an approach to support the first
phase of the migration process, i.e., inferring the possible
upgrade plans that can satisfy the request of the developer
that might want to upgrade a given TPL used in the project
under development.

Our approach aims at suggesting the most appropriate
migration plan by taking into consideration two key factors:
the popularity of the upgrade plan and the availability of
discussions about it. Popularity means how many clients
have performed a given upgrade plan, while discussions are
GitHub issues that have been open and closed in projects
during the migration phase.

By mining GitHub using the dedicated API,11 we are
able to extract the information required as input for the
recommendation engine of EvoPlan.

The conceived approach is depicted in Fig. 2 and
consists of six components, i.e., Crawler, Data Extractor,
Graph Builder, Issues Miner, Plan Calculator and Plan
Ranker. With the Crawler component, the system retrieves
information about GitHub repositories and downloads them
locally. These repositories are then analyzed by the Data
Extractor component to excerpt information about commits
and history version. Once all the required information has
been collected, Graph Builder constructs a migration graph
with multiple weights, and Issues Miner generates data
related to GitHub issues. The Plan Calculator component
relies on the graph to calculate the k-best paths available.

11https://developer.github.com/v3/

Finally, Plan Ranker sorts these paths by considering
the number of issues. In the succeeding subsections, we
are going to explain in detail the functionalities of each
component.

3.1 Crawler

Migration-related information is mined from GitHub using
the Crawler component. By means of the JGit library,12

Crawler downloads a set P of GitHub projects that have
at least one pom.xml file, which is a project file containing
the list of all adopted TPLs. In case there are multiple
pom.xml files, they will be analyzed separately to avoid
information loss. Then, the Crawler component analyzes
all the repository’s commits that affect the pom.xml to find
added and removed TPLs. Additionally, raw issue data is
obtained and stored in separate files. In particular, we count
the number of opened and closed issues for each project p
∈ P in a specific time interval D. The starting point of this
interval is identified when a certain version v of a given
library l that is added as dependencies of the pom.xml file
in client C. A previous study [12] demonstrates that the
monthly rate of open issues tends to decrease over time.
Thus, the endpoint of D is obtained by considering the
first two months of development to extract relevant data
concerning the considered library l without loss of data. In
such a way, the GitHub issues that have been opened and
closed for each TLP that has been added in p, are obtained
for further processing phases.

3.2 Data extractor

In this phase, data is gathered by means of JGit, and
analyzed using different processing steps as follows. The
first step makes use of the GitHub log command to retrieve
the list of every modification saved on GitHub for a specific
file. Furthermore, the command provides the code SHA for
every commit, which allows us to identify it. For instance,

12https://www.eclipse.org/jgit/

R. Rubei et al.12004

https://developer.github.com/v3/
https://www.eclipse.org/jgit/


Fig. 2 EvoPlan’s architecture

GitHub

Crawler

Commits diff

POM files

 Raw issues
 data

Data Extractor

CSV file

Migration
 graph

Plan calculator

Graph Builder

Upgrade
 plans

Issue miner
Ranked 

plans
Filtered issues

Plan ranker

Fig. 3a depicts a commit related to a given pom.xml file
taken as input. The identifier of the commit is used to
retrieve the list of the corresponding operated changes as
shown in Fig. 3b. In particular, inside a commit we can find
a large number of useful information like what was written
or removed and when. The Data Extractor component
focuses on the lines which contain an evidence of library
changes. In a commit, the added lines are marked with the
sign ’+’, whereas the removed ones are marked with ’-’ (see
the green and red lines, respectively shown in Fig. 3b). In
this way, the evolution of a library is obtained by analyzing
the sequence of added/removed lines. With this information,
EvoPlan is also able to count how many clients have
performed a specific migration. The information retrieved
by the Data Extractor component is stored in a target CSV
file, which is taken as input by the subsequent entity of the
process as discussed below.

3.3 Graph Builder

This component creates nodes and relationships by consid-
ering the date and library changes identified in the previous
phase. To this end, EvoPlan exploits the Cypher query lan-
guage13 to store data into a NEO4J graph. For instance, we
extract from CSV files two pairs library-version (l,v1) and
(l,v2) with signs ’-’ and ’+’, respectively. In this way, the
component creates an oriented edge from (l,v1) to (l,v2).
Once the first edge is created, any further pairs containing
the same library upgrade will be added as an incremented

13https://neo4j.com/developer/cypher-query-language/

weight on the graph edge. The date value contained in the
CSV record is used to avoid duplicated edges or loops. Fur-
thermore, each edge is weighted according to the number
of clients as described in Data Extractor phase. That means
if we find w times the same couple (l,v1) to (l,v2) (i.e., a
number of w projects have already migrated the library l
from v1 to v2), the edge will have a weight of w. Thus,
the final outcome of this component is a migration graph
that considers the community’s interests as the only weight.
For instance, Fig. 4 represents the extracted migration graph
for the slf4j-api library. The graph contains all the mined
version of the library and for each pair the correspond-
ing number of clients that have performed the considered
upgrade is shown. For instance, in Fig. 4 the edge from the
version 1.6.1 to 1.6.4 is selected, and 14 clients (see the
details on the bottom) have performed such a migration.

3.4 Plan calculator

Such a component plays a key role in the project. Given a
library to be upgraded, the starting version, and the target
one, Plan Calculator retrieves the k shortest paths by using
the well-founded Yen’s K-shortest paths algorithm [31]
which has been embedded into the NEO4J library.

As a default heuristic implemented in EvoPlan, the
component retrieves all the possible paths that maximize
the popularity of the steps that can be performed to do
the wanted upgrade. Thus, the Plan Calculator component
employs the aforementioned weights which represent the
popularity as a criteria for the shortest path algorithm.

Providing upgrade plans for third-party libraries: a recommender system... 12005

https://neo4j.com/developer/cypher-query-language/


Fig. 3 Example of artifacts used
by the Data Extractor
component

1.3.1

1.5.11

1.4.2

1.5.0

1.6.0

1.7.1

1.6.4

1.5.5

1.5.8

1.5.3

1.6.1

1.7.51.5.10

1.4.3

1.6.2

1.6.3

1.6.61.5.6

1.5.2

1.7.2

1.7.12

1.7.7

1.7.10

1.7.21

1.7.6

1.7.20

1.7.24

1.7.25

1.7.22
1.7.4

1.7.26

1.8.0-b

1.7.30

1.7.18 1.7.19

Fig. 4 Migration graph of the slf4j library

R. Rubei et al.12006



Fig. 5 List of k-shortest paths for slf4j

By considering the graph shown in Fig. 4, there are
several possibilities to upgrade slf4j from version 1.5.8
to 1.7.25. By taking into account the available weights,
EvoPlan can recommend the ranked list depicted in Fig. 5.
The first path in the list suggests to follow the steps 1.6.1,
1.6.4, and 1.7.5 to reach the final version considered in
the example, i.e., 1.7.25.14 Such a plan is the one that is
performed most by other projects, which rely on slf4j and
that have already operated the wanted library migration.
Thus, such a path is more frequent than directly updating
the library to the newest version.

3.5 Issues miner

Issues play an important role in project development.
For instance, by solving issues, developers contribute to
the identification of bugs as well as the enhancement of
software quality through feature requests [16]. In the scope
of this work, we exploit issues as criteria for ordering
upgrade plans. In particular, we rely on the availability of
issues that have been opened and closed due to upgrades of
given third-party libraries.

The Issue Miner component is built to aggregate and
filter raw issues data gathered in the early stage of the
process shown in Fig. 2. However, due to the internal
construction of NEO4J, we cannot directly embed this data
as a weight on the migration graph’s edges. Thus, as shown
in Section 3.1, we collect the number of open and closed
issues considering a specific time window, i.e., two months
starting from the introduction of a certain TLP in the project.
Then, this component filters and aggregates the issues data
related by using Pandas, a widely-used Python library for

14It is worth noting that the popularity values are disproportionate to
the popularity of the corresponding upgrade plans. In the example
shown in Fig. 5 the most popular upgrade is the one with popularity
value 0.898.

data mining [21]. For instance, Table 2 shows the mined
issues related to the commons-io library. In particular, for
each version of the library, the number of issues that have
been opened and closed by all the analysed clients since
they have migrated to that library version is shown. EvoPlan
can employ the extracted data to enable a ranking function
based on GitHub issues as discussed in the next section.

Issues Miner works as a stand-alone component, thus it
does not impact on the time required by the overall process.
In this way, we have an additional source of information that
can be used later in the process as a supplementary criterion
to choose the ultimate upgrade plan from the ranked list
produced by the Plan Calculator component.

3.6 Plan ranker

In the final phase, the k-paths produced by the Plan
Calculator are rearranged according to the information
about issues. For every path, we count the average value
of opened/closed issues. A large value means that a certain
path potentially requires less integration effort since there
are more closed issues than the opened ones [16], i.e., issues
have been tackled/solved rather than being left untouched.

Thus, the aim is to order the plans produced by Plan
Calculator according to the retrieved issues: among the
most popular plans we will propose those with the highest
issue values.

Table 3 shows an example of the ranking process. There
are two highlighted paths, the gray row corresponds to the
best result according to the plan popularity only. In fact, the
gray highlighted plan is the one with lower popularity value.
Meanwhile, the orange row is recommended according to
the issues criteria (in this case, the higher the issue value, the
better). The path that should be selected is the orange one
because it represents the one characterized by the highest
activity in terms of opened and closed issue, among the most

Providing upgrade plans for third-party libraries: a recommender system... 12007



Table 2 Issues information
extracted for commons-io Version Open issues Closed Issues Delta

1.0 14 33 19

1.3.2 150 420 270

1.4 87 408 321

2.0 5 10 5

2.0.1 133 457 324

2.1 129 516 387

2.2 67 999 932

2.3 5 20 15

2.4 939 3,283 2,344

2.5 64 918 854

2.6 64 548 484

popular ones. In this way, EvoPlan is able to recommend
an upgrade plan to migrate from the initial version to
the desired one by learning from the experience of other
projects which have already performed similar migrations.

4 Evaluation

To the best of our knowledge, there are no replication
packages and reusable tools related to the approaches
outlined in Section 2 that we could use to compare EvoPlan
with them. As a result, it is not possible to compare EvoPlan
with any baselines. Thus, we have to conduct an evaluation
of the proposed approach on a real dataset collected from
GitHub. Section 4.1 presents three research questions, while
Section 4.2 describes the evaluation process. Section 4.3
gives a detailed description of the dataset used for the
evaluation, and the employed metrics are specified in
Section 4.4.

4.1 Research questions

To study the performance of EvoPlan, we consider the
following research questions:

– RQ1: How effective is EvoPlan in terms of prediction
accuracy? To answer this question, we conduct
experiments following the ten-fold cross-validation
methodology [13] on a dataset considering real

migration data collected from GitHub. Moreover,
we compute Precision, Recall, and F-measure by
comparing the recommendation outcomes with real
migrations as stored in GitHub;

– RQ2: Is there any correlation between the GitHub
issues and the popularity of a certain migration path?
We analyze how the number of opened and closed
issues could affect the migration process. To this end,
we compute three different statistical coefficients to
detect if there exists any correlation among the available
data.

– RQ3: Is EvoPlan able to provide consistent recommen-
dations in reasonable time? Besides the recommended
migration steps, we are interested in measuring the time
of the overall process, including the graph building
phase. This aims at ascertaining the feasibility of our
approach in practice.

4.2 Overall process

As depicted in Fig. 6, we perform experiments using the
ten-fold cross-validation methodology on a well-founded
dataset coming from an existing work [14]. Given the whole
list of ≈11,000 projects, we download the entire dataset
using the Crawler component. Then, the dataset is split
into testing and ground truth projects, i.e., 10% and 90%
of the entire set, respectively, by each round of the process.
This means that in each round we generate a new migration
graph by using the actual 90% portion. Given a single

Table 3 An example of the
ranking results Proposed Path Pop. value Issues value

1.5.8, 1.6.1, 1.6.4, 1.6.6, 1.7.5, 1.7.25 1.446 57

1.5.8, 1.6.1, 1.6.4, 1.7.5, 1.7.25 0.898 58

1.5.8, 1.7.5, 1.7.25 1.0 58

1.5.8, 1.6.1, 1.7.5, 1.7.25 1.0 61

1.5.8, 1.6.1, 1.6.4, 1.7.2, 1.7.5, 1.7.25 1.238 58

R. Rubei et al.12008



Fig. 6 The evaluation process

Initial dataset Testing projects

Graph builder

Ground Truth graph

Analyzing commits Actual path

Calculate plan Upgrade plan

Comparison

Split ten-fold
Start-end version

Ground truth

testing project, the Analyzing commits phase is conducted to
capture the actual upgrade path followed by the repository,
as stated in Section 3.1. To build the ground-truth graph,
i.e., the real migration in GitHub, we consider projects not
included in the testing ones and calculate every possible
upgrade plan for each TPLs.

To aim for a reliable evaluation, we select the starting
and the end version of a certain TPL from the actual plan
of a testing project. The pair is used to feed the Plan
Calculator component which in turn retrieves the proposed
plan. In this respect, by following the two paths we are able
to compute the metrics to assess the overall performance,
namely precision, recall, and F-measure.

4.3 Data collection

We make use of an existing dataset which has been curated
by a recent study available on GitHub.15 The rationale
behind this selection is the quality of the repositories which
were collected by applying different filters, i.e., removing
duplicates, including projects with at least one pom.xml
file, and crawling only well-maintained and mature projects.
Table 4 summarizes the number of projects and pom.xml
files. The dataset consists of 10,952 GitHub repositories,
nevertheless we were able to download only 9,517 of them,
as some have been deleted or moved. Starting from these
projects, we got a total number of 27,129 pom.xml files.
Among them, we selected only those that did not induce
the creation of empty elements by the Data Extractor
component while analyzing logs and diffs as shown in Fig. 3.
The filtering process resulted in 13,204 pom.xml files. The
training set is used to create a migration graph to avoid any

15https://bit.ly/2Opd1GH

possible bias. For each round, we tested 420 projects, and
3,821 projects are used to build the graph.

Table 5 summarizes the set of libraries in the
dataset, obtained by employing the Crawler module (cf.
Section 3.1). There are seven popular libraries,16 i.e., junit,
httpclient, slf4j, log4j, commons-io, guava, and commons-
lang3. Among others, junit has the largest number of
migrations, i.e., 2,972. Concerning the number of versions,
slf4j has 71 different versions, being the densest library.
Meanwhile, commons-lang3 is associated with the small-
est number of migrations, i.e., 162, and commons-io is the
sparsest library with only 16 versions. The last column
shows the number of versions that we could exploit to get
the issues. The difference means that no issues data was
available for the whole versions dataset.

4.4 Metrics

Given a migration path retrieved by EvoPlan, we compare it
with the real migration path extracted from a testing project.
To this end, we employ Precision, Recall, and F-measure (or
F1-score) widely used in the Information Retrieval domain
to assess the performance prediction of a system. In the first
place, we rely on the following definitions:

– A true positive corresponds to the case when the
recommended path matches with the actual path
extracted from the testing projects; TP is the total
number of true positives;

– A false positive means that the recommended upgrade
plan is not present in the ground-truth paths; FP is the
total number of false positives;

16https://mvnrepository.com/popular

Providing upgrade plans for third-party libraries: a recommender system... 12009

https://bit.ly/2Opd1GH
https://mvnrepository.com/popular


Table 4 Statistics of the dataset
Total number of projects 10,952

Number of downloaded projects 9,517

Total number of pom.xml files 27,129

Number of screened pom.xml files 13,204

– A false negative is the migration steps that should be
present in the suggested plan but they are not; FN is the
total number of false negatives.

Considering such definitions, the aforementioned metrics
are computed as follows:

P = T P

T P + FP
(1)

R = T P

T P + FN
(2)

F − measure = 2 × P × R

P + R
(3)

Rank correlation: We consider the following coefficients:

– Kendall’s tau measures the strength of dependence
between two variables. It is a non-parametric test, i.e.,
it is based on either being distribution-free or having
a specified distribution but with the distribution’s
parameters unspecified.

– Pearson’s correlation is the most widely used correla-
tion statistic to measure the degree of the relationship
between linearly related variables. In particular, this
coefficient is suitable when it is possible to draw a
regression line between the points of the available data.

– Spearman’s correlation is a non-parametric test that
is used to measure the degree of association between
two variables. Differently from Pearson’s coefficient,
Spearman’s correlation index performs better in cases
of monotonic relationships.

All the considered coefficients assume values in the
range [-1,+1], i.e., from perfect negative correlation to
perfect positive correlation. The value 0 indicates that
between two variables there is no correlation.

In the next section, we explain in detail the experimental
results obtained through the evaluation.

5 Experimental results

We report and analyze the obtained results by answering the
research questions introduced in the previous section.

5.1 RQ1: How effective is EvoPlan in terms
of prediction accuracy?

Table 6 reports the average results obtained from the
cross-validation evaluation. EvoPlan achieves the maximum
precision for commons-io, i.e., 0.90 in all the rounds.
The tool also gets a high precision for junit, i.e., 0.88.
Meanwhile, the smallest precision, i.e., 0.58 is seen by
httpclient. Concerning recall, EvoPlan obtains a value of
0.94 and 0.96 for the junit and commons-io libraries,
respectively. In contrast, the tool achieves the worst recall
value with httpclient, i.e., 0.64. Overall by considering
the F-Measure score, we see that EvoPlan gets the best
and the worst performance by commons-io and httpclient,
respectively.

Altogether, we see that there is a substantial difference
between the performance obtained by EvoPlan for different
libraries. We suppose that this happens due to the
availability of the training data. In particular, by carefully
investigating each library used in the evaluation, we see that
the libraries with the worst results in terms of performance
have a few migrations that we can extract from the pom.xml
on average (cf. Table 5). For instance, there are 162 and
209 migrations associated with commons-lang3 and slf4j-
api, respectively and EvoPlan gets a low performance on
these libraries. Meanwhile, there are 2,972 migrations for

Table 5 Number of migrations
and versions Library # migrations # versions # issue vers.

junit 2,972 30 19

httpclient 218 53 35

slf4j 209 71 26

log4j 229 42 19

commons-io 186 16 11

guava 627 70 34

commons-lang3 162 16 13

R. Rubei et al.12010



Table 6 Precision, Recall, and F-Measure considering popularity

Library Precision Recall F-measure

junit 0.88 0.94 0.91

httpclient 0.58 0.64 0.61

slf4j-api 0.65 0.74 0.69

log4j 0.88 0.93 0.91

commons-io 0.90 0.96 0.94

guava 0.60 0.73 0.65

commons-lang3 0.66 0.67 0.65

junit and EvoPlan gets high precision, recall, and F1 for this
library. It means that less data can negatively affect the final
recommendations.

Another factor that can influence the conducted evalua-
tion could be the number of versions involved in an upgrade
for each library i.e., the availability of fewer versions dra-
matically reduce the migration-related information. This
hypothesis is confirmed by the observed values for log4j
and junit that bring better results with 39 and 40 analyzed
versions respectively. However, there is an exception with
guava, i.e., EvoPlan yields a mediocre result for the library
(F1=0.65), though we considered 627 migration paths and
49 different versions. By examining the library, we real-
ized that it has many versions employed in the Android
domain as well as abandoned versions. Thus, we attribute
the reduction in performance to the lack of decent training
data.

5.2 RQ2: Is there any correlation between the GitHub
issues and the popularity of a certain migration
path?

To answer this question we measure the correlation among
observed data, i.e., the number of clients that perform a
certain migration step and the issues delta considering the
time interval described in Section 3.1.

The number of clients performing migration is defined
with the term popularity as described in Section 3.4.
Meanwhile, as its name suggests, the delta is the difference
between the number of closed issues and the number of open
ones. It assumes a positive value when the number of closed
issues is greater than the opened ones. In contrast, negative
values are observed when open issues exceed the number of

closed ones. In other words, deltas characterizes migration
steps in terms of closed issues.

The results of the three indexes are shown in Table 7.
As we can see, all the metrics show a positive correlation
between the number of clients that perform a certain
migration and the corresponding delta issues. In particular,
Kendall’s tau τ is equal to 0.458, while Spearman’s rank
ρ reaches the value of 0.616. The maximum correlation is
seen by Pearson’s coefficient, i.e., r = 0.707.

The strong correlation suggests that given a library,
the more clients perform a migration on its versions, the
more issues are solved. As it has been shown in a recent
work [16], the act of solving issues allows developers to
identify bugs and improve code, as well as enhance software
quality. Summing up, having a large number of migrated
clients can be interpreted as a sign of maturity, i.e., the
evolution among different versions attracts attention by
developers.

5.3 RQ3: Is EvoPlan able to provide consistent
recommendations in reasonable time?

We measured the average time required for running
experiments using a mainstream laptop with the following
information: i5-8250U, 1.60GHz Processor, 16GB RAM,
and Ubuntu 18.04 as the operating system. Table 8

Table 7 Correlation coefficients with a p-value < 2.2e−16

Metric Value

Kendal’s (τ ) 0.458

Pearson (r) 0.707

Spearman (ρ) 0.616

Providing upgrade plans for third-party libraries: a recommender system... 12011



summarizes the time for executing the corresponding
phases.

The most time consuming phase is the creation of
graph with 15,120 seconds, corresponding to 252 minutes.
Meanwhile, the querying phase takes just 0.11 seconds to
finish; the testing phase is a bit longer: 145.44 seconds. It is
worth noting that the testing consists of the sub-operations
that are performed in actual use, i.e., opening CSV files,
extracting the actual plan, and calculating the shortest path.
This means that we can get an upgrade plan in less than a
second, which is acceptable considering the computational
capability of the used laptop. This suggests that EvoPlan can
be deployed in practice to provide upgrade plans.

5.4 Threats to validity

This section discusses possible threats that may affect
the proposed approach. Threats to internal validity could
come from the graph building process. In particular, the
crawler can retrieve inaccurate information from pom.xml
files or GitHub commits. To deal with this, we employed
a similar mining technique used in some related studies
presented in Section 2.2, i.e., Meditor, APIwave, aiming
to minimize missing data. Another possible pitfall lies in
downgrade migrations, i.e., a client that moves from a
newer version to an older one. We consider the issue as
our future work. Concerning external validity, the main
threat is related to the generalizability of the obtained
results. We try to mitigate the threat by considering only
popular Java libraries. Nevertheless, EvoPlan relies on
a flexible architecture that can be easily modified to
incorporate more TPLs. Concerning the employed GitHub
issues data, they are coarse-grained, i.e., we can have a
huge number of issues that do not have a strong tie with
the examined TLPs. We addressed this issue in the paper
by considering the ratio of the delta instead of absolute
numbers. Concerning the supported data sources, EvoPlan
employs Maven and GitHub to mine migration histories and
retrieve issues, respectively. Thus, currently, upgrade plans
can be recommended for projects that rely on these two

Table 8 Execution time

Phase Time (seconds)

Graph building 15,120

Querying 0.11

Testing 145.44

technologies. However, the architecture of EvoPlan has been
designed in a way that supporting additional data sources
would mean operating localized extensions in the Crawler,
Data Extractor, and Issue Miner components without
compromising the validity of the whole architecture.

Finally, threats to construct validity concern the ten-
fold cross-validation procedure shown in Section 4.2. Even
though this technique is used mostly in the machine
learning domain, we mitigate any possible incorrect values
by considering a different ground-truth graph for each
evaluation round. Additionally, the usage of GitHub issues
could be seen as a possible threat. We mitigate this aspect
by using such information as post-processing to reduce
possible negative impacts on the recommended items, i.e.,
ranking the retrieved upgrade plans according to the total
amount of issues.

6 Related work

A plethora of studies highlights different issues related
to the TLPs migration problem. Dig and Johnson [10]
demonstrate the role of code refactorings as the principal
origin of breaking changes, i.e., failures caused by a library
upgrade from an older version to a newer one.

Binary incompatibilities (BIs) happen when the applica-
tion is no longer compilable after migration [5]. The Clirr
tool has been used to detect the entities that cause incompat-
ibilities by analyzing the JAR files of the testing project. By
evaluating six different recommendation techniques that are
typically used to fix BIs, this study exhibits that they were
capable of resolving only 20% of them.

A recent work [14] attracts the community attention over
the migration awareness problem. By conducting a user
study, the two main migration awareness mechanisms have
been evaluated, i.e., security advisories and new releases
announcement. In this respect, the results show that the
majority of the software systems rarely update the older but
reliable libraries and security advisories provide incomplete
solutions to the developers.

Alrubaye et al. [1] conducted an empirical study to
highlight the benefits of the migration process over software
quality measured by the three standard metrics used in
the domain, i.e., coupling, cohesion, and complexity. By
relying on a dataset composed of nine different libraries
and 57,447 Java projects, statistical tests have been carried
on relevant migration data. The results confirm that the
migration process improves the code quality in terms of the
mentioned metrics.

The problem of Technical debt has been studied in both
academia and industry [3], and it is related to “immature”
code sent to production [6]. Although this approach is used
to achieve immediate results, it could lead to future issues

R. Rubei et al.12012



after a certain period. To solve this, technical debt can be
repaid through code refactorings by carrying out a cost-
benefit analysis. Lavazza et al.[15] propose the usage of
technical debt as an external software quality attribute of
a project. Furthermore, technical debt can affect software
evolution and maintainability by introducing defects that are
difficult to fix.

Sawant and Bacchelli [25] investigate API features
usages over different TLPs releases by mining 20,263
projects and collect 1,482,726 method invocations belong-
ing to five different libraries. Using the proposed tool
fine-GRAPE, two case studies have been conducted consid-
ering two aspects, i.e., the number of migrations towards
newer versions and the usages of API features. The results
confirm that developers tend not to update their libraries.
More interesting, the second study shows that a low per-
centage of API features are actually used in the examined
projects.

7 Conclusion and future work

The migration of TPLs during the development of a
software project plays an important role in the whole
development cycle. Even though some tools are already in
place to solve the issue, different challenges are still opened,
i.e., reducing the effort during the migration steps or the
need to consider heterogeneous data sources to name a few.
We proposed EvoPlan, a novel approach to support the
upgrading of TPLs by considering miscellaneous software
artifacts. By envisioning different components, our tool is
capable of extracting relevant migration data and encoding
it in a flexible graph-based representation. Such a migration
graph is used to retrieve multiple upgrade plans considering
the popularity as the main rationale. They are eventually
ranked by exploiting the GitHub issues data to possibly
minimize the effort that is required by the developer to
select one of the candidate upgrade plans. A feasibility study
shows that the results are promising, with respect to both
effectiveness and efficiency.

As future work, we plan to incorporate additional
concepts in the migration graph, i.e., TLPs documentation,
Stack Overflow posts, and issues sentiment analysis. We
believe that such additional data allows EvoPlan to better
capture the migration paths performed by clients. Moreover,
we can consider a larger testing dataset to improve
the coverage of the recommendation items, i.e., provide
upgrade plans for more TLPs.

Acknowledgements The research described in this paper has been
partially supported by the AIDOaRT Project, which has received
funding from the European Union’s H2020-ECSEL-2020, Federal
Ministry of Education, Science and Research, Grant Agreement
n◦101007350

References

1. Alrubaye H, Alshoaibi D, Alomar E, Mkaouer MW, Ouni A
(2020) How does library migration impact software quality and
comprehension? an empirical study. In: Ben Sassi S, Ducasse S,
Mili H (eds) Reuse in emerging software engineering practices.
Springer International Publishing, Cham, pp 245–260

2. Alrubaye H, Mkaouer MW, Khokhlov I, Reznik L, Ouni A,
Mcgoff J (2020) Learning to recommend third-party library
migration opportunities at the api level. Appl Soft Comput
90:106–140

3. Avgeriou P, Kruchten P, Ozkaya I, Seaman C (2016) Managing
Technical Debt in Software Engineering (Dagstuhl Seminar
16162). Dagstuhl Rep 6(4):110–138. https://doi.org/10.4230/Dag
Rep.6.4.110

4. Collie B, Ginsbach P, Woodruff J, Rajan A, O’Boyle MF
(2020) M3: Semantic api migrations. In: 2020 35Th IEEE/ACM
international conference on automated software engineering
(ASE), pp 90–102

5. Cossette BE, Walker RJ (2012) Seeking the ground truth: a
retroactive study on the evolution and migration of software
libraries. In: Procs. of the ACM SIGSOFT 20th Int. Symposium on
the Foundations of Software Engineering - FSE ’12. Cary, North
Carolina, pp 1. https://doi.org/10.1145/2393596.2393661

6. Cunningham W (1992) The wycash portfolio management sys-
tem. SIGPLAN OOPS Mess 4(2):29–30. https://doi.org/10.1145/
157710.157715

7. Di Rocco J, Di Ruscio D, Di Sipio C, Nguyen P, Rubei R (2020)
TopFilter: An Approach to Recommend Relevant GitHub Topics.
In: Proceedings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM),
ESEM ’20. Association for Computing Machinery, New York.
https://doi.org/10.1145/3382494.3410690

8. Di Rocco J, Di Ruscio D, Di Sipio C, Nguyen PT, Rubei R Devel-
opment of recommendation systems for software engineering:
the CROSSMINER experience 26(4):69. https://doi.org/10.1007/
s10664-021-09963-7

9. Di Sipio C, Rubei R, Di ruscio D, Nguyen P.T (2020) Using a
Multinomial Naı̈ve Bayesian (MNB) Network to Automatically
Recommend Topics for GitHub Repositories. In: Proceedings of
the 24th International Conference on Evaluation and Assessment
in Software Engineering, EASE2020. ACM, Trondheim, pp 24–
34. https://doi.org/10.1145/3383219.3383227

10. Dig D, Johnson R (2005) The role of refactorings in API evolution.
In: 21St IEEE Int. Conf. on Software Maintenance (ICSM’05), pp
389–398. https://doi.org/10.1109/ICSM.2005.90

11. Hora A, Valente MT (2015) Apiwave: Keeping track of API popu-
larity and migration. In: 2015 IEEE Int. Conf. On Software Main-
tenance and Evolution (ICSME), pp 321–323. https://doi.org/
10.1109/ICSM.2015.7332478

12. Kikas R, Dumas M, Pfahl D (2015) Issue dynamics in
github projects. In: Proceedings of the 16th International
Conference on Product-Focused Software Process Improvement
- Volume 9459, PROFES 2015, pp 295–310. Springer, Berlin.
https://doi.org/10.1007/978-3-319-26844-6 22

13. Kohavi R (1995) A study of cross-validation and bootstrap for
accuracy estimation and model selection, Morgan Kaufmann
Publishers Inc., San Francisco

14. Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018)
Do developers update their library dependencies?: An empirical
study on the impact of security advisories on library migration.
Empir Softw Eng 23(1):384–417. https://doi.org/10.1007/s10664-
017-9521-5

15. Lavazza L, Morasca S, Tosi D (2018) Technical debt as an external
software attribute. In: Proceedings of the 2018 International

Providing upgrade plans for third-party libraries: a recommender system... 12013

https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1145/3383219.3383227
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1109/ICSM.2015.7332478
https://doi.org/10.1109/ICSM.2015.7332478
https://doi.org/10.1007/978-3-319-26844-6_22
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5


Conference on Technical Debt - TechDebt ’18. ACM Press,
Gothenburg, pp 21–30. https://doi.org/10.1145/3194164.3194168.
http://dl.acm.org/citation.cfm?doid=3194164.3194168

16. Liao Z, He D, Chen Z, Fan X, Zhang Y, Liu S (2018) Exploring
the Characteristics of Issue-Related Behaviors in GitHub Using
Visualization Techniques. IEEE Access 6:24003–24015. https://
doi.org/10.1109/ACCESS.2018.2810295. Conference Name:
IEEE Access

17. Misra V, Reddy JSK, Chimalakonda S (2020) Is there a
correlation between code comments and issues?: an exploratory
study. In: Proceedings of the 35th Annual ACM Symposium on
Applied Computing. ACM, Brno Czech Republic, pp 110–117.
https://doi.org/10.1145/3341105.3374009

18. Neil L, Mittal S, Joshi A (2018) Mining Threat Intelligence
about Open-Source Projects and Libraries from Code Repository
Issues and Bug Reports. In: 2018 IEEE International Conference
On Intelligence and Security Informatics (ISI), pp 7–12.
https://doi.org/10.1109/ISI.2018.8587375

19. Nguyen PT, Di Rocco J, Di Ruscio D, Di Penta M (2019) Cross-
Rec: Supporting Software Developers by Recommending Third-
party Libraries. J Syst Softw:110460. https://doi.org/10.1016/
j.jss.2019.110460. http://www.sciencedirect.com/science/article/
pii/S0164121219302341

20. Nguyen PT, Di Rocco J, Di Ruscio D, Ochoa L, Degueule T,
Di Penta, M (2019) FOCUS: A recommender system for mining
API function calls and usage patterns. In: Proceedings of the 41st
international conference on software engineering, ICSE ’19. IEEE
Press, Piscataway, pp 1050–1060

21. Pandas: pandas documentation — pandas 1.1.3 documentation
(2020). https://pandas.pydata.org/docs/

22. Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza
M (2016) Prompter: Turning the IDE into a self-confident
programming assistant. Empir Softw Eng 21(5):2190–2231.
https://doi.org/10.1007/s10664-015-9397-1

23. Robillard MP, Maalej W, Walker RJ, Zimmermann T (eds) (2014)
Recommendation Systems in Software Engineering, Berlin.
https://doi.org/10.1007/978-3-642-45135-5

24. Rubei R, Di Sipio C, Nguyen PT, Di Rocco J, Di Ruscio D
(2020) PostFinder: Mining Stack Overflow posts to support soft-
ware developers. Inf Softw Technol 127:106367. https://doi.org/
10.1016/j.infsof.2020.106367. http://www.sciencedirect.com/
science/article/pii/S0950584920301361

25. Sawant AA, Bacchelli A (2017) Fine-GRAPE: fine-grained APi
usage extractor – an approach and dataset to investigate API usage.
Empir Softw Eng 22(3):1348–1371. https://doi.org/10.1007/
s10664-016-9444-6

26. Teyton C, Falleri JR, Blanc X (2012) Mining Library Migration
Graphs. In: 2012 19Th Working Conf. on Reverse engineering, pp
289–298. https://doi.org/10.1109/WCRE.2012.38

27. Xavier L, Brito A, Hora A, Valente MT (2017) Historical and
impact analysis of api breaking changes: a large-scale study. In:
2017 IEEE 24Th int. Conf. on software analysis, evolution and
reengineering (SANER), pp 138–147

28. Xing Z, Stroulia E (2005) Umldiff: an algorithm for object-
oriented design differencing. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’05. Association for Computing Machinery,
New York, pp 54–65. https://doi.org/10.1145/1101908.1101919

29. Xing Z, Stroulia E (2007) API-Evolution Support with Diff-
CatchUp. IEEE Trans Softw Eng 33(12):818–836. https://doi.org/
10.1109/TSE.2007.70747

30. Xu S, Dong Z, Meng N (2019) Meditor: Inference and
Application of API Migration Edits. In: 2019 IEEE/ACM 27Th
Int. Conf. on Program Comprehension (ICPC), pp 335–346.
https://doi.org/10.1109/ICPC.2019.00052

31. Yen JY (2007) Finding the k shortest loopless paths in a network

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Riccardo Rubei is a PhD
student at the University of
L’Aquila, Italy. He is working
on mining techniques to anal-
yse open source software with
the aim of providing develop-
ers with useful real-time rec-
ommendations.

Davide Di Ruscio is an Asso-
ciate Professor at the DISIM
University of L’Aquila. His
main research interests are
related to several aspects of
Software Engineering, Open
Source Software, and Model
Driven Engineering (MDE)
including domain specific
modelling languages, model
transformation, model dif-
ferencing, coupled evolution,
and recommendation systems.
He has published more than
170 papers in various journals,
conferences and workshops on

such topics. He is a member of the steering committee of the Interna-
tional Conference on Model Transformation (ICMT), of the Software
Language Engineering (SLE) conference, of the Seminar Series on
Advanced Techniques & Tools for Software Evolution (SATTOSE), of
the Workshop on Modelling in Software Engineering at ICSE (MiSE)
and of the International Workshop on Robotics Software Engineering
(RoSE). He is in the editorial board of the International Journal on
Software and Systems Modeling (SoSyM), of IEEE Software, of the
Journal of Object Technology, and of the IET Software journal. More
information is available at http://people.disim.univaq.it/diruscio/.

Claudio Di Sipio is a PhD
student at the University of
L’Aquila, Italy. He is work-
ing on mining techniques to
analyse open source software
and he is also investigating the
application of low-code plat-
forms to support the devel-
opment of recommendation
systems.

R. Rubei et al.12014

https://doi.org/10.1145/3194164.3194168
http://dl.acm.org/citation.cfm?doid=3194164.3194168
https://doi.org/10.1109/ACCESS.2018.2810295
https://doi.org/10.1109/ACCESS.2018.2810295
https://doi.org/10.1145/3341105.3374009
https://doi.org/10.1109/ISI.2018.8587375
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
http://www.sciencedirect.com/science/article/pii/S0164121219302341
http://www.sciencedirect.com/science/article/pii/S0164121219302341
https://pandas.pydata.org/docs/
https://doi.org/10.1007/s10664-015-9397-1
https://doi.org/10.1007/978-3-642-45135-5
https://doi.org/10.1016/j.infsof.2020.106367
https://doi.org/10.1016/j.infsof.2020.106367
http://www.sciencedirect.com/science/article/pii/S09505849203 01361
http://www.sciencedirect.com/science/article/pii/S09505849203 01361
https://doi.org/10.1007/s10664-016-9444-6
https://doi.org/10.1007/s10664-016-9444-6
https://doi.org/10.1109/WCRE.2012.38
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/ICPC.2019.00052
http://people.disim.univaq.it/diruscio/


Juri Di Rocco is a postdoc-
toral researcher at the Uni-
versity of L’Aquila, Italy. He
obtained a PhD in Com-
puter Science from the Univer-
sity of L’Aquila. He is inter-
ested in several aspects of
software language engineering
and Model Driven Engineer-
ing (MDE) including domain
specific modelling languages,
model transformation, model
differencing, modelling repos-
itories and mining techniques.
More information is available
at http://www.di.univaq.it/juri.

dirocco.

Phuong T. Nguyen obtained
a PhD in Computer Science
from the University of Jena,
Germany. Since graduation,
he has worked as a university
teaching and research assis-
tant in Vietnam and Italy. He
is now with the University of
L’Aquila, Italy as a postdoc-
toral researcher. His research
interests include Computer
Networks, Semantic Web,
Recommender Systems, and
Machine Learning. Recently,
he has been working to
develop recommender sys-
tems in Software Engineering

for mining open source code repositories.

Providing upgrade plans for third-party libraries: a recommender system... 12015

http://www.di.univaq.it/juri.dirocco
http://www.di.univaq.it/juri.dirocco

	Providing upgrade plans for third-party libraries: a recommender system...
	Abstract
	Introduction
	Motivations and background
	Explanatory examples
	Existing techniques
	Dimensions to be further explored

	Proposed approach
	Crawler
	Data extractor
	Graph Builder
	Plan calculator
	Issues miner
	Plan ranker

	Evaluation
	Research questions
	Overall process
	Data collection
	Metrics
	Rank correlation:


	Experimental results
	RQ1: How effective is EvoPlan in terms of prediction accuracy?
	RQ2: Is there any correlation between the GitHub issues and the popularity of a certain migration path?
	RQ3: Is EvoPlan able to provide consistent recommendations in reasonable time?
	Threats to validity

	Related work
	Conclusion and future work
	References




