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Abstract
The increasing essential complexity of software systems makes current soft-
ware engineering methods and practices fall short in many occasions. Software
assistants have the ability to help humans achieve a variety of tasks, including
the development of software. Such assistants, which show human-like compe-
tences such as autonomy and intelligence, help software engineers do their job
by empowering them with new knowledge. This article investigates the research
efforts that have been conducted on the creation of assistants for software design,
construction and maintenance paying special attention to the user-assistant
interactions. To this end, we followed the standard systematic mapping study
method to identify and classify relevant works in the state of the art. Out of
the 7580 articles resulting from the automatic search, we identified 112 primary
studies that present works which qualify as software assistants. We provide all
the resources needed to reproduce our study. We report on the trends and goals of
the assistants, the tasks they perform, how they interact with users, the technolo-
gies and mechanisms they exploit to embed intelligence and provide knowledge,
and their level of automation. We propose a classification of software assistants
based on interactions and present an analysis of the different automation pat-
terns. As outcomes of our study, we provide a classification of software assistants
dealing with the design, construction and maintenance phases of software devel-
opment, we discuss the results, identify open lines of work and challenges and
call for new innovative and rigorous research efforts in this field.
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1 INTRODUCTION

Essential complexity of software systems keeps increasing as new software projects need to embrace a growing num-
ber of technologies and domains.1,2 Two recent examples would be the Internet of Things—forcing software systems
to deal with the management and run-time variability of hardware components embedded in the system—and artifi-
cial intelligence—pushing software to integrate more and more smart features. As such, current software engineering
methods and practices struggle to catch up.

In particular, this problem occurs during the software design and construction phases. Its relevance is undeniable
since both phases together account, on average, for more than 50% of the effort spent over the entire software development
cycle3 and cover the main activities of software development.4 Thus, since decades ago, there has been an interest in
providing any help developers can use to optimize and accelerate their work (while keeping the same quality standards)
is valuable.5,6

For instance, software engineers can resort to information available online, including technical knowledge of a variety
of languages and algorithms together with source code examples and libraries for reuse. A number of question and answer
websites specific to the software development problem (like StackOverflow) or code search platforms are populated and
curated in a community effort.7

While this is helpful, it can be complemented with a proactive action and an effort to filter, comprehend, adapt
and apply all the information available to both prevent the risk of ending up in a situation of information overload
and to save time. It is worth noting that being stuck in problem solving is identified as the number one cause of devel-
opers’ unhappiness, causing low productivity, low motivation and low quality of the produced artifacts.8,9 Although
this main cause is mostly related to a knowledge problem, time pressure, bad code quality and coding practice, and
repetitive tasks are also among the top-10 causes of developers’ unhappiness. Unlike the former cause, the latter prob-
lems are not due to conceptual difficulties or lack of technical knowledge but are related to developers’ performance
and speed.

To overcome many of these problems, Integrated Development Environments (IDEs) have progressively implemented
numerous software tools to simplify many tasks central to the software design and construction processes. Functions like
code reformatting, copy and paste or code refactoring have made their way into developers’ work process, to such a point
that it seems hardly conceivable to remove them from the IDEs now. While these tools are clearly an improvement, they
still fall short.10 For instance, the decision of what tool to use is still driven by the engineer, who must have enough
knowledge to understand the problem at hand, imagine potential solutions, select the most suitable one for the context,
and apply it with respect to the language and the architecture of the project.

As such, we are starting to see a new generation of more capable systems to help in software engineering called, in this
article, software assistants. Although we are not aware of any universal definition of software assistant, these are expected
to help users complete their tasks showing some degree of human-like competencies such as autonomy, decision-making,
technical knowledge and social abilities.

Given the importance and potential impact of this new breed of support systems for software engineers, in this
article, we have performed a systematic mapping study11,12 that aims to identify and classify relevant works. As a
result, our work will provide a comprehensive view of the field by characterizing the goals, types, methods, inter-
action patterns, underlying technologies and overall characteristics of software assistants presented so far in the
literature. Moreover, we also discuss the limitations of current software assistants and potential lines of further work
that could make them even more useful and a key contribution to successfully complete large and complex software
projects.

We believe our study could be useful to software practitioners looking to improve the productivity and quality of their
work, by identifying new software to install and test. It may also help software researchers trying to understand the current
trends in this field and the open challenges that remain to be solved. Tool vendors could also exploit this work to identify
new potential assistants to integrate in the coming versions of their IDEs.

The rest of this article is structured as follows. Section 2 provides background, defines software assistants and intro-
duces related works. Section 3 introduces the research questions and the protocol of our systematic mapping study.
Section 4 presents the results of the data extraction and analysis and the classification of software assistants. Section 5
identifies the potential limitations and threats to validity of this work. Section 6 discusses the results and identifies
research challenges and open lines based on the state of the art. Finally, Section 7 concludes on the general results of
this review.
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2 BACKGROUND AND RELATED WORKS

The evolution of software engineering systems has always been tightly related to the advances of software technologies
and user-understanding. In this section, we present the basis upon which this article builds.

2.1 Supporting software engineering

Tools for programmers naturally exist since the beginning of software engineering around 1960. At that time, they were
single tools focused on some specific tasks of the SE life cycle, cumbersome to use, and acting in isolation of each
other.13 Around 1980, the increasing complexity of the solutions to be produced as well as the better understanding of the
users’ needs drive the improvement of the existing SE instrumentation.14 A new wave of systems then gradually replaces
tools with more comprehensive functionalities gathered in environments, such as Integrated Programming Support Envi-
ronments (IPSE) and later software engineering environments (SEE). These systems fall under the emerging field of
computer-aided software engineering (CASE) tools, which lay the foundation for modern-day IDEs. As environments
improve, other issues emerge such as the need for collaboration to produce ever more complex systems, which paves the
way for the computer-supported cooperative work (CSCW) community and more specifically the collaborative software
engineering (CSE) community.15 The CSE community then seeks to enhance environments to cope with different forms
of collaboration.

During the 90s, the agent research fields explodes and brings to light a new opportunity for collaboration: that with
the machine acting as an autonomous system with which users (or other agents) could interact and work.16 Some agents
are refined into intelligent agents that are reactive, proactive, and social agents tailored for human-agent collaboration,17

and applied to support software engineering processes.18,19 However, due the lack of computing resources and/or data to
exploit, such agent-based systems never became mainstream in software engineering.20

Since, the broad Software Agent community has remained active, and has branched into several subcategories. Partic-
ularly, the notion of conversational agent (a.k.a. bot or chatbot—coined by Michael Mauldin in 1994) is gaining importance
in the last years, and has quickly became a must-have, especially in the sectors of customer support or video game.20,21 In
2016, Storey and Zagalsky22 laid the foundation for research on bots in software engineering and described how bots are
increasingly used to support tasks that traditionally required human intelligence. It has particularly been applied to soft-
ware engineering to create BOTse23 or DevBots20 (bots for software engineering).24 A consensual definition established
during the BOTse Dagstuhl seminar in 202023 defines bots as systems featuring at least one of the following characteris-
tics: (i) automates one or more feature(s), (ii) performs one or more function(s) that a human may do, (iii) interacts with
a human or other agents.

At ICSE’06, Boehm predicted a new kind of developer-helping systems for 2020 as “that provide feedback to developers
based on domain knowledge, programming knowledge, systems engineering knowledge, or management knowledge.”14

The description of previous bot systems is almost inline with these expectations but still lacks one essential characteristic
that Boehm described as “the use of knowledge.” Storey and Zagalsky22 identify bots embedding knowledge as one spe-
cific type of bots. Thus, knowledge appear as an inflexion point, which opens the way for the study of a specific type of
systems—knowledge-empowered DevBots—that we will call software assistants for software engineering.

2.2 Knowledge provided by software systems

Knowledge appeared in the 80s in the scope of Software with knowledge-based systems.25 However, it is with the increas-
ing amount of available storage and computation resources that it appeared in the 2000s as a revolution for digital systems,
involving fundamental changes in the way people relate to their own knowledge.26 It is a broad term which encapsulates
different notions and which has no consensual definition.27 Nevertheless, it is commonly admitted that data can lead to
information which, in turn, can lead to knowledge, based on the DIKW hierarchy.28,29 In the scope of software systems,
we adopt the definition of knowledge as (i) the result of the analysis of structured information, (ii) related to the current
context, problem, or activity, (iii) and tailored to the user’s needs.29-31

Based on the highly influencial description of the DIKW hierarchy of Rowley,30 we provide the following description
of data, information and knowledge in the frame of software engineering:
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SAVARY-LEBLANC et al. 859

• Data is the content of the considered software artifacts.
• Information is a fact about one or more artifacts, resulting from their simple reading.
• Knowledge is the result of the analysis and combination of information, valuable in the scope of the current problem,

in the current context.

Thus, the notion of knowledge only makes sense when linked to a specific task or problem. Let us illustrate these
concepts with an example. John codes a Java program and launches the execution in his IDE. An error occurs about a
graphical element that John coded, and the error message is displayed in the console. Then John wants to understand
what portion of the code causes the error. In this context, data is represented by the all the files containing Java code as
well as the error message displayed in the console. One information could be that 35 Java files contain references to the
graphical element (as all information, this is not context-dependent). Then, one knowledge would be that the file causing
the error might be among a shortlist of three recommended files.

2.3 Software assistants for software engineering

Software Engineers exploit knowledge in many software engineering activities,32 on a wide range of software and/or
domain specific topics.33 This calls for a new wave of systems that put knowledge at the heart of their logic and inter-
actions, made possible by the current state of data and technologies. To describe these systems, we adopt the definition
of software bots presented in Section 2.1, and define software assistants for software engineering as software bots which
provide users with valuable knowledge to help them identify, understand, or solve a problem. The notion of knowledge
refers to the definition introduced in Section 2.2. For the sake of clarity in the rest of this article, we will refer to software
assistants for software engineering with the shorter version software assistants.

In some previous works, software assistants may also be referred as Intelligent Assistant,34 IA-based digital Assis-
tant,35 Intelligent User Assistance System,36 Virtual Assistant,37 Smart Assistant,38 Intelligent Agents,39 or shortly
Bots.23 While the description of these systems seems to converge on the notion of assistant, some also involve the
notion of Intelligence. As knowledge appears to be only one component of what constitutes intelligence,40,41 we refrain
from qualifying software assistants of intelligent or smart. However, artificial intelligence techniques, such as machine
learning or ontologies, might be embedded in software assistants to create, organize, or filter the knowledge that is
required.

Software assistants may help users make a decision and eventually perform a task according to this decision with
a certain degree of autonomy. Their outcomes might not be deterministic, as they adapt to each problem and context.
They might be used to automate manual tasks to save time and reduce effort, but they must be able to come up with
new information and ideas and that may be valuable to increase the knowledge of the user. Software assistants consist in
complete and ready-to-use software systems, accessible through a user interface (to be able to provide users with valuable
knowledge). Therefore, single components and algorithms are not considered as software assistants.

Although there is a wide variety of bots and software tools embedded into IDEs that perform automated tasks and
are used during the software development process (e.g., refactoring, search, and indentation tools), it is worth not-
ing that software assistants are still not as mainstream as these. This motivates our effort to build a comprehensive
view of the literature about software assistants, in the hope of fostering research in potential directions and identifying
challenges.

2.4 Previous secondary studies on software assistants in SE

This section positions our work with respect to systematic literature reviews, mapping studies and surveys on topics
related to software assistants and software engineering.

To the best of our knowledge, there is no study with the same focus as ours. On the contrary, the available studies either
focus on one specific kind of assistant-related approach and study its application in the software engineering life cycle, or
focus on one of its stages and identify the assistant-related approaches and systems. Let us list and describe them below.

Some related works aim to investigate the use of one specific approach during the various stages of software engineer-
ing. For instance, Gasparic and Janes42 conducted a systematic literature review on recommender systems for software
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engineering (RSSE). They identified 47 implemented systems in papers published before 2013, and analyzed their inputs,
their outputs, the effort required from engineers, and the benefits they provide to their users. Their results showed that
RSSE mainly support reuse, debugging, implementation, and maintenance phases/activities, which we also cover in this
study (see our inclusion criteria in Section 3.2). They found that most RSSE mainly recommend source code, and only
some of them digital documents. Our work differs from this one in several aspects. First, the RSSE that the authors has
studied qualify as one of the types of software assistant that we consider in this systematic mapping study—as long as they
present at least a fully implemented prototype of the assistant. Second, our research questions are broader. For instance,
we elaborate on aspects such as the nature and the environment of the software assistant which both condition how the
knowledge should be presented. Finally, our inclusion time frame from 2010 to 2022 updates the overview of the trends
of RSSE.

Almonte et al. conducted a systematic mapping review43 about recommender systems targeting the model-driven
engineering (MDE) paradigm. As the authors explain, they excluded recommender systems for activities not related
to models or modeling. Unlike it, our study covers the design and construction phases of software development
regardless the paradigm developers follow. This is, our study is not restricted to MDE, but includes works that pro-
pose assistants for any task or approach (e.g., TDD, BDD, etc.) and therefore, do not only deal with models but
other software artifacts. On the other hand, the scope of our study is restricted to assistants for the design and con-
struction phases, leaving out phases such as requirement elicitation, testing or maintenance. Furthermore, Almonte
et al. study which tasks are subject to recommendations, the applicable recommendation techniques and how rec-
ommender systems are evaluated. While we also study on which tasks assistants assist users and the technologies
that are used, in addition to these, we pay especial attention to HCI indicators and to what extent assistants are
automated.

Savchenko et al. carried out a systematic mapping study44 about smart tools in software engineering with the goal to
answer the question “how could the technological innovations affect the software development ecosystems and software
processes?”, and studied the state of the art between 2015 and 2019. While the authors try to disclose the impact of software
innovations in businesses, our work puts the emphasis on the software assistants themselves (i.e., how they are built,
with which tasks they help engineers, how users interact with software assistants, etc.).

Different studies also investigated the way machine learning (ML) has been applied in software engineering.
Borges et al.45 collected 177 studies from 1992 to 2019 in two groups: (i) software quality and software engi-
neering management (40 papers) and (ii) software quality and software test (15 papers). They conclude that soft-
ware quality is the most frequent SWEBOK knowledge area target for both clusters (51%) and that ML is mainly
used to make predictions in SE. A similar study by Shafiq et al.46 shows that based on 227 articles about ML
for software engineering from 1991 to 2019, 21 were focusing on requirements, 39 on architecture and design,
21 on implementation, 119 on quality assurance and analytics and 9 on maintenance. Our study is richer and
broader in the sense that we do not only focus on assistants empowered with ML techniques, and more spe-
cific in the sense that we are only interested in working assistants and ignore theoretical and unimplemented
approaches.

Other mapping studies focused on the use of tools during one specific task of software engineering. For instance,
Iung et al.47 reported on the tools to enable domain-specific language development. Sebastian et al.48 investigated code
generation using model-driven architecture, and identified implemented systems enabling code generation. Similarly,
Brunschwig et al.49 provided an overview of tools to support software modeling on mobile devices.

To the best of our knowledge, there is no previous systematic mapping study on understanding and classifying imple-
mented and ready-to-use software assistants to support software development tasks without restricting the techniques
used to achieve this goal. With this work, we aim to fill the gap and summarize implemented software assistants for
software engineering systems that were presented in scientific venues.

3 RESEARCH METHOD

This study follows the guidelines proposed by Petersen et al.11 to conduct systematic mapping studies (SMS). A pilot
study was conducted on a small number of articles to assess the suitability of the criteria and the method, which led to
discussions and updates on the protocol. This section describes the different steps of the exploration phase as defined in
the final version of the protocol.
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3.1 Research questions

In this study, our goal is to study the work done on software assistants for software engineering. To do so, we examine
what has been done, what can be considered as recurrent practice, and what has not yet been explored. Starting from the
definition of software assistant provided in Section 2:

Software bots
(i)

which provide users with valuable knowledge
(ii)

to help them
(iii)

identify, understand, or solve a problem.
(iv)

We have divided and analyzed each part of it and identify RQs that will help us understand the role of software assistants.
First of all, in RQ1, we focus on (iii) and wonder how software assistants help practitioners with software engineering
activities, that is, whether it is the general category of assistance (debugging, modeling, refactoring, etc.) or the technical
environment. In RQ2, we focus on (iv) and the identification, understanding, or solving of a problem. We review the
actions that software assistants are able to perform and the types of practitioner-SA interaction. As software assistants are
bots (i), in RQ3, we assess the automation levels they propose and what they need to ask to the practitioner. Finally, in RQ4,
we investigate (ii), and in particular, how assistants integrate valuable knowledge. We establish a list of the datasources
they exploit.

We thus formulate four research questions that cover these different points:

• RQ1: What are the tasks that software assistants help users achieve, in which environments do they operate and which
languages do they support? With this research question, we aim to identify which parts of the software design, con-
struction and maintenance are best supported by assistants as well as trends in the supported environments and
languages.

• RQ2: How do software assistants assist users? This question aims to identify the different types of assistants (as perceived
by their users) and the way they present information to the user.

• RQ3: What kind of software technologies are used to embed knowledge in software assistants? This question investigates
how software assistants are equipped with knowledge to support users. This includes analyzing their data usage as
well as finding whether they exploit machine learning (ML) techniques.

• RQ4: To what extend are software assistants automated? To answer this question, we assessed the levels of automation
and the trigger of each software assistant in our set of primary studies.

3.2 Inclusion and exclusion criteria

The inclusion criteria define the scope of our systematic mapping study and enable us to identify papers which will help
build answers to the research questions. We have focus on those papers that:

1. Are written in English, peer-reviewed, and published between January 2010 and January 2022.*
2. Focus on at least one of the these knowledge areas from the SWEBOK:50

• Software design subject, which relates to creating and checking software designs.
• Software construction subject, which includes program editors, compilers and code generators, interpreters, and

debuggers.
• Software maintenance subject, which covers artifacts visualization and re-engineering.
• Socio-cultural systems for software engineering, which cover socio-cultural aspects such as social networking as

identified in Reference 51.

3. Focus on the assistance for the professional software practitioners involved in the four processes in the previous item.

*Motivated by the background provided in Section 2, for example, the recent emergence of bots, and knowledge-engineering technologies. Software
assistants were expected for 2020, so we study the last 12 years to evaluate their evolution.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3170 by Statens B

eredning, W
iley O

nline L
ibrary on [05/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



862 SAVARY-LEBLANC et al.

T A B L E 1 Selected conferences

Acronym Name

AAMAS International Conference on Autonomous Agents and Multi-Agent Systems

ASE International Conference on Automated Software Engineering

AVI International Conference on Advanced Visual Interfaces

CAiSE International Conference on Advanced Information Systems Engineering

CHI Conference on Human Factors in Computing Systems

CSCWD International Conference on Computer Supported Cooperative Work in Design

ECOOP European Conference on Object-Oriented Programming

ER International Conference on Conceptual Modeling

ESEC/FSE Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering

ICIC International Conference on Intelligent Computing

ICSE International Conference on Software Engineering

IEA/AIE International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems

IJCAI International Joint Conference on Artificial Intelligence

IS International Conference on Intelligent Systems

IUI International Conference on Intelligent User Interfaces

MODELS International Conference on Model Driven Engineering Languages and Systems

OOPSLA Object-Oriented Programming, Systems, Languages and Applications

PETRA Pervasive Technologies Related to Assistive Environments

SAC Symposium on Applied Computing

TOOLS Technology of Object-Oriented Languages and Systems

WWW The Web Conference (e.g., World Wide Web)

Exclusion criteria enabled us to filter out irrelevant papers. Papers featuring one of the following characteristics were
excluded:

• Does not provide assistance for at least one of the considered software engineering tasks.
• Does not introduce an implemented and ready to use software assistant—that is, we discarded papers that only intro-

duce an new algorithm or technique that according to the authors could be integrated into a software assistant but it
does not provide a software assistant in itself.

• Does not claim to have, describe or provide screenshots of the user interface.
• Is a survey, a systematic literature review, or a mapping study.

3.3 Search process and paper selection

The search process was conducted automatically by querying the dblp computer science bibliography† website through its
API with a custom script. Our algorithm searched for each keyword in Table 3 present in the title of papers that belong
to any of the conference proceedings of Table 1 and journals of Table 2. The keyword was built to cover the notion of
assistance and its synonyms for software engineering. This resulted in 676 queries (52 venues × 13 keywords) to the
API, formatted as follows: KEYWORD+venue:VENUE:. An index of venue codes for the API is available online on our
website.52

†https://dblp.org
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T A B L E 2 Selected journals

Editor Name

Springer Automated Software Engineering

ACM Communications of the ACM

Wiley Computational Intelligence

PeerJ Computer Science

Elsevier Data and Knowledge Engineering

Springer Data Science and Engineering

Elsevier Decision Support Systems

Elsevier Electronic Notes in Theoretical Computer Science

Springer Empirical Software Engineering

Elsevier Expert Systems with Applications

Taylor & Francis Human–Computer Interaction

Elsevier Information and Software Technology

Elsevier Information Processing and Management

Elsevier Information Sciences

Elsevier Information Systems

IEEE Intelligent Systems

Taylor & Francis International Journal of Computational Intelligence Systems

World Scientific International Journal on Artificial Intelligence Tools

Springer Journal of Intelligent Information Systems

Elsevier Journal of Systems and Software

Elsevier Knowledge-Based Systems

Elsevier Science of Computer Programming

Springer Software Quality Journal

Springer Software and Systems Modeling

IEEE Software

ACM Transactions on Information Systems

ACM Transactions on Intelligent Systems and Technology

IEEE Transactions on Knowledge and Data Engineering

ACM Transactions on Software Engineering and Methodology

IEEE Transactions on Software Engineering

Springer User Modeling and User-Adapted Interaction

The venues had been collectively selected by the five authors, taking into account conferences and journals based on
their peer-reviewing process and their themes about software engineering, software assistance, or both. Keywords had
been chosen in a similar manner to convey the notion of assistance. Some of the keywords take advantage of the default
completion feature provided by the dblp’s API. For instance, the use of facilitat enabled us to retrieve titles containing
words like facilitate, facilitating, or facilitator.

The automated search was performed on the 21st of January 2022 on the dblp’s API and retrieved 7580 items. At the
time of the query, we checked that each venue listed in Tables 1 and 2 was indexed and there were records for the last ten
years.
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T A B L E 3 Search keywords

Search keywords

assist, recommend, help, facilitat, enhanc, answer, empower, augment, aid, suggest, repair, fix, support

T A B L E 4 Pruning keywords

Pruning keywords

systematic literature review, mapping study, survey, elderly, health, medical, autism, clinical, disease, home, impairment, older, living,
assistive, deaf, colorblind, disabilities, medication

We observed that the resulting list of papers contained a substantial number of articles from socio-medical disciplines.
To avoid these, we identified the set of keywords frequently used in socio-medical disciplines and not in software engi-
neering. These are captured in Table 4, which also includes keywords derived from the exclusion criteria mentioned in
Section 3.2. We used these keywords to prune the list of papers by automatically discarding those whose titles contained
any of these keywords. This automatic pruning phase removed 1543 articles and left 6037 to be processed manually by
the authors.

As part of our protocol, all the authors defined and agreed on the fact that papers should be discarded or kept according
to the decision diagram presented in Figure 1.

Before manually checking all the papers, and in order to ensure that the criteria was understood equally by the authors
and did not lead to subjective interpretations, two authors used the defined criteria and, supported by the algorithm
in Figure 1, they worked independently to perform the exclusion–inclusion phase on a subset of 5.6% of all these 6037
articles, that is, on 338 papers. Then, we computed the inter-rater reliability (IRR) using a two-way mixed, single score
ICC(A, 1) check for absolute agreement.

The first time, the result was not as good as expected, showing that the co-authors had different views of some aspects
defined in the criteria. This criteria was refined, validated with the rest of the authors and the inclusion-exclusion phase
was performed again on a different subset of 388 papers independently. Then, we obtained ICC(A, 1) = 0.723 (95% CI:
0.664 < ICC(A, 1) < 0.773) which indicates a moderate to good reliability,53 and therefore the same understanding of the
criteria defined (the agreement is 99.3% between the two raters).

Finally, one of these two authors performed the exclusion of the rest of the papers, applying the algorithm of Figure 1
to the reading of the title, the abstract and finally the full paper. It resulted on the exclusion of 5559 papers based on their
title, 244 papers based on their abstract, and 180 papers based on their full content.

3.4 Snowballing

Those papers that passed both inclusion and exclusion criteria were exploited during the snowballing step. The stage
consisted in reading the articles, especially their related work section, to identify and add to our corpus candidate soft-
ware assistants that had either not been obtained during our search or that were discarded by mistake in the exclusion
process. In the meantime, the snowballing phase mitigated the threat to validity concerning the absence of a confer-
ence or a journal in the initial venues list (Tables 1 and 2) as it gathered new papers regardless of their origin. Each
newly selected article was manually tested against inclusion and exclusion criteria, to maintain the consistency of our
corpus.

We performed the snowballing phase twice. Once on the original set of papers, and then again on the papers discovered
during the first snowballing phase. We did not carried out a third snowballing phase because we observed a large number
of articles already overlapping previously identified articles.

These two snowballing steps lead to the gathering of 35 and 23 new articles respectively, increasing the final number of
retained articles to 112, to which we will refer as primary studies. Figure 2 summarizes the whole search and assessment
process.
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SAVARY-LEBLANC et al. 865

F I G U R E 1 Inclusion–exclusion decision algorithm specification for the reading of title, abstract, and full paper

3.5 Data extraction

The data we extracted from each article are:

1. The source (journal or conference), the publication year, the title, and authors. This information was extracted directly
from the website of the editor.

2. The name of the tool that was eventually either provided in the title of the paper, or introduced in the full content of
the paper that.

3. The supported language(s). This information was either directly given by the authors, or inferred from the datasets
used for the evaluation, or deduced from the screenshots and/or the solution environment.

4. The execution environment of the assistant that was described by the authors, such as a standalone application, or
an Eclipse plugin.

5. A summary of the description and goal of the assistant as provided by the authors.
6. The datasources exploited by the assistant as presented in architecture diagrams, or detailed in the description of the

solution. We distinguished local datasources, for example, the local access to the IDE or the access to local version-
ing changes, from remote datasources, for example, the access to the StackOverflow database or the access to the
continuous integration server of the project.

7. Whether the assistant is a recommender system (RS)—that is, it provides recommendations—for software engi-
neering or not. The concept of recommender system for software engineering is based on the definition adopted
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866 SAVARY-LEBLANC et al.

F I G U R E 2 Exploration results

by Robillard and Walker in their book:54 [… ] a software application that provides information items estimated to be
valuable for a software engineering task in a given context.

8. If the assistant is a RS: The nature of the output, the explanation system, the confidence indicator, and the feedback
system. These elements relate to the way the RS supports human cognition to achieve certain tasks, hence we study
(i) the nature of the output, that is, whether the RS presents the information textually, graphically, or both;55 (ii)
the explanation system, that is, the means with which it explains why an item is recommended (if any);56 (iii) the
confidence indicator, that is, how it shows how confident it is about a recommendation (if any);57 and (iv) the feedback
system, that is, the way it enables users to provide feedback about a recommendation (if any).57

9. Whether the assistant uses machine learning. This information is either highlighted by the authors, or deduced from
the algorithms used in the papers.

10. The automation levels of the assistant that relies on the Parasuraman et al.58 framework for evaluating the automa-
tion levels of a system. They propose a model based on the four stages of human information processing to analyze
the automation of a system over four different aspects: information acquisition, information analysis, decision selec-
tion, and action implementation. In order to measure the automation level for each of these four steps, we apply
the 10-levels automation scale to for each step as suggested in Reference 58. The extended scales used to measure
automation are provided in Appendix B.

11. Whether A user study had been conducted as described in the evaluation section of the paper.
12. Whether a replication package was provided for the evaluation.
13. Whether the source code of the assistant was provided.

Note that elements 3, 4, and 6 refer to the actual contribution presented in the paper at the time it was written, and
does not take future work and directions into account (i.e., if the tool works for Java but the paper says that it could also
work for C or that it is extensible to C, we do not consider C).

4 RESULTS: ANALYSIS AND CLASSIFICATION OF SOFTWARE
ASSISTANTS

This section presents the results of the data analysis we conducted on the dataset of primary studies, which are also
available online.52

4.1 Selected papers

This section gathers statistics about the selected papers. Figure 3 illustrates the number of publications on software assis-
tants published between 2010 and January 2022 (month in which we performed our search). On the left, it shows the
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variation in the number per year. Although there is a maximum in 2012 with 18 papers and a minimum in 2013, 2015,
2016, and 2019 with 5 papers published, the number of submissions over time seems to be stable and there is continu-
ous work. Figure 3B shows the venues in which our selected papers have been published. It is worth noting that there is
no dedicated venue for the topic of software assistants and that these papers have been published in general SE confer-
ences. It is also interesting to see how most of these papers were published in the International Conference on Software
Engineering (ICSE) followed by the Automated Software Engineering Conference (ASE), which are both very prestigious
conferences. The complete list of the 46 source venues of our primary studies is displayed in Table 5. We note that the two
snowballing phases that we conducted enabled to collect 35 papers from 26 venues that were not included in our search
queries.

4.2 Analysis and classification results

This section is devoted to answer our research questions (cf. Section 3.1).

4.2.1 RQ1: What are the tasks that the assistants help their users achieve, in which
environments do they operate and which languages do they support?

To answer this research question, we relied on the description and goal of the assistant that we extracted from each
paper as provided by its authors. From these details, we obtained information about the tasks that each assistant supports
and identified the 51 tasks that are listed in the second column of Table 6. Note that assistants which support multiple
languages or environments appear in different lines of Table 6. Then, we grouped those tasks into 12 coarse-grained
categories to capture their purpose. These purposes are: API/code search, code completion and recommendation, code
metrics, code visualization and understanding, command recommendation, find collaborators, interface prototyping,
modeling, refactoring, fix and repair, resource identification, and version control system (VCS).

Figure 4 presents the number of assistants dedicated to each purpose. We can observe how some important efforts
have been put into the creation of assistants for API/code search, code visualization and understanding, and fix and repair,
while only isolated works have published assistants for purposes such as Interface Prototyping.

Among the wide variety of tasks, looking at Table 6, we can highlight that the Recommendation of Code Blocks
from Queries is the most popular (supported by 13 assistants), followed by assistants for Enhancement of Default Code
Completion Systems (supported by 9 assistants), the Recommendation of Model Elements, and the Suggestion of Code
Fixes (supported by 7 assistants each). It is also worth noting how textual languages (i.e., coding) are very well supported
across the whole development process—covering the tasks of finding code ideas and code excerpts, writing, refactoring
and debugging/fixing as well as providing metrics—while graphical languages are under-represented.
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868 SAVARY-LEBLANC et al.

T A B L E 5 Source venues of the primary studies

Venue Type Initially searched Number of studies
ICSE Conference Yes 25

ASE Conference Yes 7

FSE Conference Yes 7

Empirical Software Engineering Journal Yes 5

CHI Conference Yes 5

RSSE@ICSE Workshop Yes 4

Transactions on Software Engineering Journal Yes 4

VL/HCC Conference No 4

ICSE-Companion Conference Yes 3

Software and Systems Modeling Journal Yes 3

Automated Software Engineering Journal Yes 2

CSMR Conference No 2

Expert System with Applications Journal Yes 2

ICPC Conference No 2

ICSME Conference No 2

Journal of Systems and Software Journal Yes 2

MODELSWARD Conference No 2

SUITE Workshop No 2

WCRE Conference No 2

Programming Languages Journal No 1

AICCSA Conference No 1

BotSE Workshop No 1

CASCON Conference No 1

CBSoft Conference No 1

COMPSAC Conference No 1

Transactions on Service Computing Journal No 1

Data and Knowledge Engineering. Journal Yes 1

ECOOP Conference Yes 1

ESWC Conference No 1

HCI International Journal No 1

HIMI Conference No 1

IEA/AIE Conference Yes 1

Information and Software Technology Journal Yes 1

Internetware Conference No 1

IWSC Conference No 1

Knowledge-Based Systems Journal Yes 1

LIVE Workshop No 1

MODELS-C Conference Yes 1

MSR Conference No 1

OOPSLA Conference Yes 1

QUATIC Conference No 1

RecSys Conference No 1

SCAM Conference No 1

SLE Conference No 1

Transactions on Software Engineering and Methodology Journal Yes 1

UIST Conference No 1
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SAVARY-LEBLANC et al. 869

T A B L E 6 Assistant purposes and specific tasks

Purpose Specific task Environment Lang./syntax #
Primary
studies

API/code search Enhances default code completion system Eclipse Java 1 [S1]
Helps comparing libraries IntelliJ IDEA Java 1 [S2]

Web browser Java 4 [S3–S6]
Python 1 [S4]

Recommends code blocks
from text query

Adobe Flex Builder Flex Builder* 1 [S7]
Eclipse Java 2 [S8, S9]
Standalone app. Java 1 [S10]
Visual Studio Java 1 [S11]
Web browser Java 7 [S12–S18]

jQuery 1 [S19]
PHP 1 [S18]
Python 1 [S18]

Recommends new features with code Web browser Java 1 [S20]

Code completion and
recommend.

Enhances default code completion system Android Studio Java 1 [S21]
Eclipse Java 7 [S22–S28]

Infers query from example expected results Web browser SPARQL 1 [S29]
Recommends code blocks from code analysis Custom IDE Hack 1 [S30]

Java 1 [S30]
Javascript 1 [S30]
Python 1 [S30]

Eclipse Java 4 [S31–S34]
Visual Studio C# 1 [S35]

Recommends code documentation Eclipse Java 1 [S36]
Suggests additional query parameters Web browser SPARQL 1 [S37]

Code metrics Augments code with indicators Brackets Javascript 1 [S38]
Eclipse Java 3 [S39–S41]
Impromptu Impromptu* 1 [S42]

Code visualization
and understanding

Annotates code with refactoring errors Eclipse Java 1 [S43]

Augments code with live examples Eclipse Java 1 [S44]
Augments Q&A code excerpts with doc. links Web browser Java 1 [S45]

Javascript 1 [S45]
Augments Q&A posts with related terms Web browser Natural Language 1 [S46]
Displays code call graphs Eclipse Java 1 [S47]
Displays library dependencies of project Web browser Java 1 [S48]
Explains code elements with rationales Cloud9 IDE CSS 1 [S49]

HTML 1 [S49]
jQuery 1 [S49]

Finds code responsible for graphical behavior Standalone app. Java 1 [S50]
Folds less informative code regions Web browser Java 1 [S51]
Proposes new code navigation system XCode XCode* 1 [S52]
Recommends useful documentation pieces Eclipse Java 1 [S53]
Represents code as UML models Web browser Java 1 [S54]
Suggests code locations to explore Eclipse Java 2 [S55, S56]

Command
recommendation

Recommends tool commands to use Eclipse N.A. 1 [S57]

(Continues)
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870 SAVARY-LEBLANC et al.

T A B L E 6 (Continued)

Purpose Specific task Environment Lang./syntax #
Primary
studies

Find collaborators Suggests potential collaborators Standalone app. All 1 [S58]
Web browser Java 1 [S59]

Interface prototyping Suggests examples for interface prototyping Web browser N.A. 1 [S60]

Modeling Provides a model search engine Web browser XMI models 1 [S61]
Recommends functional grouping of

requirements
Standalone app. Natural Language 1 [S62]

Recommends model elements Eclipse Ecore models 2 [S63, S64]
Generic Modeling

Environment
DSL 1 [S65]

Papyrus UML 1 [S66]
Standalone app. BPMN 1 [S67]

UML 2 [S68, S69]
Recommends modeling actions Web browser UML 1 [S70]
Supports model transformation edition Eclipse ATL transformation 1 [S71]
Supports modeling with rule checking Standalone app. SysML 1 [S72]

UML 1 [S72]

Refactoring Suggests code refactorings Eclipse Java 4 [S73–S76]
IntelliJ IDEA Java 1 [S77]

Detects and facilitates refactoring Visual Studio C# 1 [S78]

Repair and fix Recommends model fixes Eclipse UML 1 [S79]
SPEM 1 [S80]

Recommends Q&A posts Eclipse Java 2 [S81, S82]
Suggests source of potential build fail Visual Studio C# 1 [S83]
Suggests code fixes Eclipse Java 5 [S84–S88]

MaxCompute Java 1 [S89]
Web browser C++ 1 [S90]

Java 1 [S90]
Suggests code for exception handling Android Studio Java 1 [S91]

Eclipse Java 1 [S92]
Suggests reason why build failed Web browser Java 1 [S93]

Resource identification Recommends code-related resources Eclipse Java 1 [S94]
Recommends error-related resources IntelliJ IDEA Java 1 [S95]

JSON 1 [S95]
XML 1 [S95]

Visual Studio Visual Studio* 1 [S96]
Recommends libraries to add for project Eclipse Java 1 [S97]
Recommends Q&A posts Eclipse Eclipse* 1 [S98]

Java 3 [S99–S101]

Version control system
(VCS)

Displays VCS potential conflicts Eclipse All 1 [S102]
Java 1 [S103]

Standalone app. All 1 [S104]
Facilitate commit untangling Standalone app. N.A. 1 [S105]
Notifies of important VCS changes Eclipse N.A. 1 [S106]
Provides information about project changes Web browser Java 1 [S107]
Suggests ideal code reviewers GitHub N.A. 1 [S108]

Standalone app. N.A. 1 [S109]
Suggests conflict resolution solutions Eclipse Ecore models 1 [S110]

Standalone app. C 1 [S111]
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We also extracted from each paper the environment in which the assistants work and the language (or syntax) that
they support. The results can be found in the third and fourth columns of Table 6 and in Figure 5. A star (∗) means that
the assistant supports all languages supported by the IDE. The most popular environment by far is the Eclipse IDE with
52 out of the 112 assistants. In fact, out of all the assistants, 73 of them (65%) are part of an IDE. The second most popular
environment is the Web Browser (27 out of 112—24%) and standalone applications (12 out of 112—11%). There is no clear
correlation between the environments and the tasks toward which the assistants help.

With respect to the languages supported, Java has a strong monopoly with 72 out of the 112 studied assistants (64%).
It is worth noting that only 5 assistants support the top-3 programming, scripting, and markup languages according to
the Stack Overflow 2020 survey of most popular technologies,‡ which are JavaScript, HTML/CSS, and SQL; and only 7
assistants support modeling languages (BPMN and XMI models).

4.2.2 RQ2: How do software assistants assist users?

To answer this research question, we have identified the different types of assistants as perceived by its users and have
studied, for each assistant, three Human-Computer Interaction (HCI) indicators, and the nature of the output that they
provide.

‡https://insights.stackoverflow.com/survey/2020#most-popular-technologies
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872 SAVARY-LEBLANC et al.

T A B L E 7 Software assistant types

Type Analyze and display Help deciding Perform actions

Informer S Yes No No

Passive RS Yes Yes No

Active RS Yes Yes Yes

Types of assistants
We have identified that there are three main actions that assistants perform internally. The first one—and the one that
every assistant integrates—is to analyze information and display the result of the analysis. The second is to help the
user make a decision by suggesting one or several alternatives. The third is to perform an action based on a decision
when required. Based on these three actions, we have classified the assistants and have obtained three different types as
presented in Table 7. They are:

• Informer system, which helps toward reaching awareness about the work in progress or the environment. It takes raw
data and information as input, analyze and/or aggregate it, and display the results without any side effect.

• Passive recommender system (passive RS), whose aim is to help the user make a decision during a software engineer-
ing task. To be able to provide meaningful potential decisions, it takes raw data or information as input, process and
analyzes the inputs, and eventually produce one or several alternatives for the current decision-making problem.

• Active recommender system (active RS), which extends the passive RS by enabling the assistant to perform or implement
the result of the decision.

For each paper included in the study, we used Table 7 to identify the type of software assistant. This process was
performed manually by one author, in a systematic way, after reading the full content of each paper. Systems performing an
analysis and displaying a report only were considered informer systems. As soon as the system provides a recommendation
on an action to take or a choice to make, it is considered a recommender system. If it has the ability to perform the related
action or implement the related choice, it is an active recommender system, else it is a passive recommender System. All
analyzed papers fit in one and only one of the three types. Results of this classification were discussed among the authors
to minimize the risk of errors and to validate the findings.

Figure 6 shows the number of assistants of each type grouped by purpose. We have observed that only 21% of the
assistants are informer systems (24 out of 112), 40% of them are passive RS (112), and 39% are active RS (43 out of 112).
This means that there is an equivalent distribution of passive and active recommender systems, that is, respectively assis-
tants that help make decision and respectively but do not offer the possibility to implement it and offer the possibility to
implement it. Correlating this with the set of purposes of assistants that we have identified, we can observe that all exist-
ing assistants for code metrics are of type informer, while there are no informer systems for purposes such as refactoring,
code completion and recommendation, resources identification, and finding collaborators. This has some logic given that
in these categories, the tasks that the assistants perform are likely to require making decisions and, in occasions, taking
actions, too (Table 8).
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SAVARY-LEBLANC et al. 873

T A B L E 8 Assistant types for specific tasks

Purpose Specific task Type # Primary studies

API/code search Enhances default code completion system Passive RS 1 [S1]

Recommends API names Informer 1 [S2]

Passive RS 4 [S3–S6]

Recommends code blocks from text query Active RS 2 [S7, S8]

Passive RS 11 [S9–S19]

Recommends new features with code Passive RS 1 [S20]

Code completion and
recommendation

Enhances default code completion system Active RS 8 [S21–S28]

Infers query from example expected results Active RS 1 [S29]

Recommends code blocks from code analysis Active RS 3 [S30, S34, S35]

Passive RS 3 [S31–S33]

Recommends code documentation Active RS 1 [S36]

Suggests additional query parameters Active RS 1 [S37]

Code metrics Augments code with indicators Informer S 5 [S38–S42]

Code visualization and
understanding

Annotates code with refactoring errors Informer S 1 [S43]

Augments code with live examples Informer S 1 [S44]

Augments Q&A code excerpts with doc. links Informer S 1 [S45]

Augments Q&A posts with related terms Informer S 1 [S46]

Displays code call graphs Passive RS 1 [S47]

Displays library dependencies of project Informer S 1 [S48]

Explains code elements with rationale Informer S 1 [S49]

Finds code responsible for graphical behavior Passive RS 1 [S50]

Folds less informative code regions Informer S 1 [S51]

Proposes new code navigation system Informer S 1 [S52]

Recommends useful documentation pieces Passive RS 1 [S53]

Represents code as UML models Informer S 1 [S54]

Suggests code locations to explore Active RS 2 [S55, S56]

Command recommen. Recommends tool commands to use Passive RS 1 [S57]

Find collaborators Suggests potential collaborators Passive RS 2 [S58, S59]

Interfaces prototyping Suggests examples for interface prototyping Active RS 1 [S60]

Modeling Provides a model search engine Passive RS 1 [S61]

Recommends functional grouping of requirements Passive RS 1 [S62]

Recommends model elements Active RS 6 [S63–S68]

Passive RS 1 [S69]

Recommends modeling actions Active RS 1 [S70]

Supports model transformation edition Informer S 1 [S71]

Supports modeling with rule checking Informer S 1 [S72]

Refactoring Suggests code refactorings Active RS 4 [S73, S74, S76, S77]

Passive RS 1 [S75]

Detects and facilitates refactoring Active RS 1 [S78]

(Continues)
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874 SAVARY-LEBLANC et al.

T A B L E 8 (Continued)

Purpose Specific task Type # Primary studies

Repair and fix Recommends error-related resources Passive RS 1 [S96]

Recommends model fixes Active RS 1 [S79]

Passive RS 1 [S80]

Recommends Q&A posts Passive RS 2 [S81, S82]

Suggests source of potential build fail Passive RS 1 [S83]

Suggests code fixes Active RS 6 [S84–S90]

Passive RS 1 [S89]

Suggests code for exception handling Active RS 2 [S91, S92]

Suggests reasons why build failed Informer 1 [S93]

Useful resources
identification

Recommends code-related resources Passive RS 1 [S94]

Recommends error-related resources Passive RS 1 [S95]

Recommends libraries to add for project Active RS 1 [S97]

Recommends Q&A posts Passive RS 4 [S98–S101]

VCS Displays VCS potential conflicts Informer S 3 [S102–S104]

Facilitates commit untangling Active RS 1 [S105]

Notifies of important VCS changes Informer S 1 [S106]

Provides information about project changes Informer S 2 [S107, S112]

Suggests ideal code reviewers Passive RS 2 [S108, S109]

Suggests conflict resolution solutions Active RS 1 [S110]

Passive RS 1 [S111]
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F I G U R E 7 Number of assistants per HCI indicator. (A) Feedback, (B) confidence, and (C) explanations

Human–computer interaction indicators
The communication between informer systems and users is unidirectional and users are simply consumers. Unlike
informer systems, both passive and active recommender systems and users interact. We have evaluated whether and how
the 88 active and passive recommender systems of our primary studies implement three human–computer interaction
(HCI) indicators: confidence, explanations, and feedback.

For confidence, we have observed that the assistants mostly either provide a confidence score (i.e., a single value) or
they do not provide a confidence indicator at all. Only two assistants feature a graphical confidence indicator, through a
colored circle (1 out of 88), or a rating bar (1 out of 88). Figure 7B shows the number of passive and active recommender
systems for each group and we can observe how the majority of assistants do not provide any measure of the confidence
of their recommendations.

The case is even more accentuated in the case of explanations. Figure 7C shows that only 5 assistants out of the 88
(5.7%) provides explanations. This means that, even if some assistants present confidence metrics (e.g., precision), they
still act as black-boxes and do not explain the reason behind their suggestions.
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SAVARY-LEBLANC et al. 875
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F I G U R E 8 Nature of the output provided by the assistants. (A) Number of assistants grouped by type. (B) Number of assistants
grouped by purpose

We have observed that only four recommender systems [S7, S18, S74, S99] include a feedback system and, therefore,
let their users provide feedback, as Figure 7A presents. In [S7, S18], the recommender system allows users to rate the
quality of the suggestions using a rating bar. In [S74], the system lets the users to reject or modify the suggestions keeping
track of these actions. Finally, in [S99], the authors created a recommender that, by using a sensitivity feedback system,
lets users adjust the recommendation confidence threshold.

Nature of the output provided by the assistants
We have analyzed what the nature of the output that the assistant provide to the users look like and have identified that
these outputs are: textual, graphical, textual and graphical, and by means of annotations or highlights. These categories
were proposed by Mens and Lozano55 to describe the nature of source code recommender systems. This information was
extracted manually from each paper included in our study by one author after reading the full content of the paper. All
research papers included in our study features screenshots of the recommendation and/or a textual description of the
output of the assistant. Thus, the categorization is based on the data provided by the authors in their papers, without
personal interpretation required. Results of this classification were discussed among the authors to minimize the risk of
errors.

Figure 8 presents the nature of the output of the 112 considered assistants grouped by type of assistant and by its
purpose. It is worth noticing that there is no clear majority in the outputs of informer systems. In contrast, both passive
and active recommender systems usually display their recommendations textually. These points are supported by the
purposes of those assistants, for instance, an assistant that recommends code is likely to show code (text), and an informer
assistant that is created for code visualization and understanding is likely to present its results graphically.

4.2.3 RQ3: What kind of software technologies are used to embed knowledge in software
assistants?

To answer this research question we have studied whether the assistants embed ML techniques to simulate intelligence
and human-like decisions/actions, and what sources of information/knowledge they use.

Figure 9 shows that 6 out of 45 (13%) passive recommenders and 7 out of 43 (16%) active recommenders use machine
learning. We also notice that none of the informers use machine learning. This observation might be related to the nature
of the assistant; while informers only produce annotations and metrics, active and passive recommender systems aim
to support the decision making process. Thus, they probably need to better adapt their behavior according to the user,
what could be achieved through machine learning. Among the 13 papers using machine learning, one [S75] specifically
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876 SAVARY-LEBLANC et al.
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F I G U R E 9 Machine learning usage (y-axis indicates number of assistants)

adapts its behavior according to user choices, one paper exploits data clustering techniques [S89], one learns query struc-
tures [S29], and 10 papers use training and testing datasets to train a predictive model to make recommendations [S10,
S11, S21, S56, S58, S66, S70, S83, S85, S91].

The knowledge provided by software assistants can be extracted from various inputs, such as hard-coded rules, local
analysis and metrics generation, but could also be retrieved by querying external datasources such as search-engines or
dedicated APIs. Therefore, to provide information about the origin of the provided knowledge, we extracted the list of
all datasources queried by the assistants included in this study. Table 9 lists all datasources exploited by the 112 software
assistants under study. We have grouped all these datasources in different categories (column 2) and in two groups: local
(LOC) and remote (REM) as shown in column 1.

Figure 10 presents details about the datasources that the assistants of our primary studies use—for each datasource,
we present the number of assistants of each type that use it. We can see that most informer systems (17 out of 24) exploit
the local information from the IDE, which is in line with what could be expected as these analyze data at hand to inform
about the status of a particular environment. It is also worth noticing that passive RS use more knowledge sources than
active RS.

RQ4: To what extend are software assistants automated?
In order to answer this research question, we extracted the automation features of each primary study in terms of infor-
mation acquisition, information analysis, decision selection, and action implementation. During this study analysis, we
also identified if each system was either triggered manually by the user, or automatically by the system: 46% of informer
systems are system-triggered, while respectively only 36% and 27% of active and passive recommender systems are
system-triggered.

Automation levels were extracted from the papers on the indications provided in Reference 58 and exploiting the
automation scales presented in Appendix A.

Figure 11 presents the extracted automation patterns and Figure 12 summarizes the 9 patterns we identified by group-
ing primary studies according to their different levels of automation. Based on our analysis, 2 papers [S45, S65] (one
informer system and one active recommender system) implement pattern 1, which consists in a fully automated system
from information acquisition to action implementation. Baker, from Subramanian et al. [S45], is an informer system that
augments the Stack Overflow Q&A posts in the web browser with documentation and related posts links. In this case,
an overlay window is added hidden to the web page and is displayed when users hover on question elements. In their
paper, Pati et al. [S65] implement a technique named proactive modeling into a modeling tool. The goal of this approach
is to reduce the amount of manual modeling actions when creating a model with a domain-specific modeling language
(DSML). To do so, the system proactively creates model elements that are deduced from the analysis of the syntax and
constraints of the DSML. In both cases, the system is able to acquire and analyze information autonomously, to decide of
what to do (what link to use for documentation, what elements to create), and to perform the action in the environment
in use. From all the presented automation patterns, these are the two cases where users cannot influence the behavior of
the system when started, which appears as fully autonomous.

We can observe that the information analysis fully automated except for one assistant [S20]. In this specific paper, the
system generates a first set of recommendations and expects users to provide feedback about it. From that feedback, it
works autonomously to produce final recommendations about software features to implement. Thus, this system has the
same analysis abilities as other fully automated systems but integrates a human in the loop sooner to refine its results.
As a consequence, we can say that all assistants are able to perform analysis on their own to produce recommendations.
This was a requirement imposed by our characterization of assistants, since without this step, a piece of software would
not be considered an assistant but a tool.

Figure 13 presents the number of assistants that implement these patterns aggregated by assistant type.
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SAVARY-LEBLANC et al. 877

T A B L E 9 Assistant datasources

Type Category Datasource # Primary studies
LOC Assistant knowledge Collection database 1 [S55]

Local rules 2 [S80, S86]
Documentation repository Project documents 3 [S62, S70, S72]
Execution environment Access to runtime environment 1 [S42]

ByteCode Access 1 [S50]
Java Binaries 1 [S25]
JVM Access 2 [S40, S50]

IDE IDE Access 72 [S1, S2, S8, S9, S11, S21–S36, S38–S44, S47–S50, S52–S57,
S63–S67, S70, S71, S73–S78, S80, S83–S88, S90–S92,
S94–S104]

IDE Cache 1 [S39]
Tool commands registry 1 [S57]

Local sources and versioning Sources + Versioning local 76 [S1, S2, S8, S11, S16, S21–S36, S38–S44, S47–S50,
S52–S57, S63–S67, S70, S71, S73–S78, S80, S83–S88,
S90–S92, S94–S99, S102–S106, S108–S111]

Web browser content Access to web browser request
and content

3 [S38, S94, S95]

Access to internet web searches 1 [S14]
Access to web browser editor 2 [S45, S60]

REM API list repository API libraries 7 [S2, S6, S11, S12, S14–S16]
Maven repository 1 [S3]

Code/Model/Q&A/Ontology
repository

Stack Overflow database 17 [S4, S6, S8, S11, S15, S18, S19, S36, S45, S46, S81, S82,
S96, S98–S101]

Source Code Corpus 18 [S1, S12, S17, S20, S23, S24, S28, S31, S33, S34, S51, S53,
S79, S87, S89, S97, S104, S107]

Github Rest API 9 [S3, S5, S9, S27, S30, S35, S59, S100, S112]
Model Corpus 5 [S61, S63, S67–S69]
Android apps bytecode 2 [S21, S91]
SPARQL endpoints 2 [S29, S37]
Android Sources 1 [S13]
Bytes.com 1 [S96]
Codeguru.com 1 [S96]
Codeplex repository 1 [S35]
Daniweb.com 1 [S96]
DevShed 1 [S96]
Fdroid repository 1 [S10]
Feature Request List 1 [S12]
Fix Library 1 [S90]
GenMyModel repository 1 [S66]
Gitee repository 1 [S32]
libraries.io 1 [S3]
Ontology corpus 1 [S64]
Source Forge repository 1 [S58]
Tag wiki 1 [S4]
Web pages corpus 1 [S60]
Wikipedia 1 [S46]
Wordnet 3 [S13, S25, S67]
World of code 1 [S3]

(Continues)
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878 SAVARY-LEBLANC et al.

T A B L E 9 (Continued)

Type Category Datasource # Primary studies
Documentation repository Project/Code documentation

access
4 [S12, S14, S15, S20]

Android documentation 1 [S13]
Project server Bug reports 1 [S85]

CI reports 1 [S83, S93]
Runtime execution traces 1 [S39]

Search engine Google 3 [S7, S82, S99]
Bling access 2 [S82, S99]
Blekko access 1 [S99]
Yahoo access 1 [S82]

Versioning repository Project VCS server 6 [S89, S93, S103, S105, S108, S109]
Closed feature request repo 1 [S12]
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F I G U R E 10 Data source usage by assistant type (y-axis indicates number of assistants)

F I G U R E 11 Automation patterns
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SAVARY-LEBLANC et al. 879

F I G U R E 12 Automation patterns visualization
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F I G U R E 13 Number of assistants implementing each automation pattern

5 LIMITATIONS AND THREATS TO VALIDITY

This section presents a discussion about the construct validity, the external validity, and the internal validity of the
presented results.

5.1 External validity

The external validity is concerned with whether we can generalize the results outside the scope of our study. We identify
three potential threats to external validity for our results.

First, we have restricted the scope of our study to articles published from 2010 onwards and covering the following
SWEBOK subjects:50 software design tools, software construction tool, and software maintenance tools, and the extended

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3170 by Statens B

eredning, W
iley O

nline L
ibrary on [05/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



880 SAVARY-LEBLANC et al.

subject of socio-cultural systems according to Reference 51. This naturally limits the generality of our conclusions to other
phases of the software engineering process.

Another threat to external validity relates to our primary studies. This review presents 112 software assistants iden-
tified with the protocol in Section 3. First, it is possible that some existing assistants were missed, for instance, because
they are not published in research papers or did not match our queries. To mitigate this concern as much as possible, our
search contained a large set of keywords with wildcards to maximize matches. Second, our search was limited to number
of peer-reviewed venues that guarantee the quality of the resulting articles, but we may have missed some papers that are
not published in these venues or indexed in dblp.org. To mitigate these concern, a snowballing phase composed by two
iterations was conducted, which enabled us to identify 26 new venues and 35 papers.

Finally, the last threat to external validity is linked to the nature of the considered systems. This work studies imple-
mented prototypes or mature systems that can actually be used and tested. Therefore, it excludes articles presenting new
algorithms and techniques which are not part of a usable software. This ensures a focus on systems that are really and
directly ready to use by software engineers, but may have missed promising potential assistants that are not mature as of
today.

We consider that this study has been validated through its systematic protocol and by the different reviews and dis-
cussions internally conducted by the authors. This work also provides all the required information for the mapping study
to be replicated, which may reduce some external validity concerns.

5.2 Construct validity

Construct validity refers to using the right tools and tests to get the right measures.
In the context of this systematic mapping study, the most critical point was the extraction of information from the

articles. To the extent of our knowledge, the protocols and tools that we used and explained in Section 3 are the most
appropriate.

Most of the extracted data represents nominal variables, with no intrinsic ordering. This is the case, for instance, of
the papers’ metadata, supported languages, or even datasources, which cannot be framed within a specific scale. For the
identification of other variables such as the characteristics of the recommender systems (e.g., the nature of the output, the
explanation system, the confidence indicator, and the feedback system), we relied on the classification of design decisions
proposed by Mens and Lozano,55 and for the automation level we used the scales in Reference 59 to match the needs of
the analysis.

5.3 Internal validity

Internal validity is defined as the extent to which the observed results are reliable and lack methodological errors.
The search process relies on an algorithm which performs automated queries, and hence prevents any human error.

The exclusion process is the most sensitive part of the exploration protocol. It was conducted manually, and resulted in
the rejection of 5925 papers. In order to limit the subjectivity of this treatment, the exclusion was conducted by only one
of the authors, following a rigorous protocol defined in Section 3. Additionally, before performing the exclusion, an IRR
score was computed with another author to verify compliance with the criteria.

The data extraction was also performed manually, and consisted in reading all the considered papers and filling in a
table with the criteria defined in the protocol. This could lead to errors due to human misinterpretation of the content of
the article, missing information or gray areas of the article. However, we feel in a position to say the content of the articles
was sufficient to obtain all the required information. In addition, articles whose information was considered ambiguous
were checked at least twice, at different times, in order to minimize errors due to fatigue.

6 DISCUSSION, CHALLENGES, AND OPEN LINES OF WORK

In this section, we summarize the main findings for each research questions, and identify eventual research challenges
that could drive innovation in the field of software assistants for software design, construction and maintenance. For each
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SAVARY-LEBLANC et al. 881

challenge, we provide a name, a description of what is currently missing, and potential directions with concrete action
points to improve this situation.

6.1 RQ1: What are the tasks that the assistants help their users achieve, in which
environments do they operate and which languages do they support?

We found that most of software assistants focus on helping software engineers with code-related tasks. Assistance with
other tasks such as modeling, finding collaborators or learning IDE commands remains anecdotal. This shows that the
literature focuses more on supporting software construction tasks rather than software design or maintenance tasks.
Hence, we identify assistance systems for software design as an open line for research, to support a broader variety of
tasks and participants within the software development life cycle.

64% (72 over 112) of the software assistants support Java, while most of the other identified programming languages
are only supported by one assistant over 47. Therefore, 52 over 112 (81%) software assistants are mainly integrated in
Eclipse IDE, or are not part of any specific development environment (respectively 46% and 35%).

Challenge 1: Java and Eclipse predominance. One reason for this distribution could be the large availability of resources
for Eclipse plugin development, Eclipse mainly being used as a Java IDE. This technical motivation, however, might take
the research away from the actual practices and needs of software engineers. Stack Overflow surveys from 2018 to 2020
show that Java is only the 5th most commonly used programming language, behind JavaScript, HTML/CSS or Python.
Eclipse is the 8th most commonly used IDE,§ behind Visual Studio or IntelliJ. Although these historical technologies
remain important, new research work must lead innovation on these popular technologies and their inherent technical
and human issues.

Action point: In addition to assistants for the Java language and the Eclipse IDE, the community may bring existing
or new assistance mechanisms to these increasingly popular environments and languages.

Challenge 2: IDE versus standalone application. Most of the software assistants created as standalone application or
websites have an alternative integrated to an IDE for the same task (see Table 6). The papers presenting these systems do
not provide an explanation for this design decision, which might also be justified by the ease of development of a website
or standalone application compared to an IDE-embedded solution. However, repeated changes of work environment (e.g.,
switching from the IDE to the web browser) have been correlated with interruptions in the cognitive process, which in
turn are correlated with productivity losses.60,61

Action point: Human-centric considerations must be taken into account, in addition to the quality of the algorithm,
in order to create truly efficient systems.

The following research question emphasizes the previous notion, while showing that the existing literature performs
poorly on such HCI aspects.

6.2 RQ2: How do software assistants assist users?

This systematic mapping study identified three major types of assistants which respectively have increasing competences:
informer systems, passive recommender systems, and active recommender systems. Some tasks call for one specific
assistant type, such as providing code metrics, which only requires informer systems. Other tasks require recommender
systems, which could in turn be passive or active.

Challenge 3: Lack of action mechanisms. We observed that papers featuring passive recommender systems did not jus-
tify the reason why they do not implement the related action mechanism, which stands for active in active recommender
systems.

Action point: We observe a need for further work in the direction of exploring how passive recommender systems can
be turned into active recommender systems (if applicable) by coming up with a set of actions to integrate and execution
capabilities.

The acceptability and usability of information systems strongly relies on the relation of trust between one user and the
system.62 This confidence is obtained, among other methods, by allowing the user to understand how the system works
and to control it to influence its behavior.63

§2020 survey do not provide information about IDE.
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882 SAVARY-LEBLANC et al.

Challenge 4: HCI support. Our results about HCI indicators clearly state that the user interfaces of recommender
systems hardly support these human aspects. When analyzing the 88 identified recommender systems, 30% display a
confidence indicator for their results, 5% allow users to provide feedback on their recommendations, and 6% provide an
explanation about their recommendations.

Action point: Studying these HCI aspects, such as how information is presented, how transparency is achieved, and
how users control the system, is one major research challenge for software assistants, in order to make algorithms part of
a whole user experience.64,65

6.3 RQ3: What kind of software technologies are used to embed intelligence
in software assistants?

Software assistants must hold a minimal degree of human-like intelligence to be able to perform data analysis and produce
new information. This is achieved by implementing hard coded rules and algorithms, which exploit popular technologies
and libraries to produce results, with or without the need of external data or knowledge.

Challenge 5: ML support. Our analysis shows that only one software assistant out of the 112 fully implemented systems
we studied exploits machine learning techniques which gives them the ability to change their behavior by learning from
examples.

Action point: While the identified papers do not motivate their choice not to embed machine learning, artificial intel-
ligence or even cognification mechanisms, one open line of work would be to investigate the use of such techniques to
support software assistants adaptability regarding user preferences and profiles.

In order to perform analysis and provide recommendations, software assistants exploit data which they obtain locally
and/or remotely. Local information represents the artifacts edited by software engineers (e.g., the source code), the state
and history of their IDE, and eventually other client-side information. Remote information describes the data created by
co-workers, third-parties or the community (e.g., source code, the content of company databases or model repositories)
as well as answers to questions on social community websites (e.g., Stack Overflow), or available documentation (e.g.,
system requirements).

Challenge 6: Data exploitation. Our results first show that, as expected, informer systems mainly use data from local
sources (almost 77% of their datasources usage). However, it appears that passive recommender systems tend to exploit
much more data from remote data sources than active recommender systems (57% versus 27%). Based on the nature of
this data, one may think that current passive recommender systems are likely to be more accurate and “intelligent” than
the existing active recommender systems since they are exploiting external knowledge more heavily. One potential reason
to justify this result could be the effort required to build that extra step that makes a passive recommender system into an
active recommender system.

Action point: Future work could investigate how to facilitate the integration and exploitation of community data,
information and knowledge into the analysis algorithms of software assistants with the goal to empower them. Remote
datasources rely on the availability of artifacts and knowledge created by the community. Aggregating these elements
creates a global knowledge database which references many general concepts, sometimes called background knowledge.
Then, this background knowledge can help software engineers deal with common issues, related to general concepts.
Building curated and reliable code and data repositories represents another open challenge for the research in software
assistants.

6.4 RQ4: To what extend are software assistants automated?

We have considered the automation of the software assistants in two distinct phases: (i) the activation of the system, that
is, the trigger mechanism and (ii) the behavior of the system once started. Our results show that software assistants are
either triggered manually by the user (user event trigger) or automatically by the system (system event trigger). Only
36% and 27% of respectively active and passive recommender systems are triggered automatically, compared to 46% of
informer systems and passive recommender systems. While active recommender systems might present more risks to be
automated because they can create, modify or delete content, as it is the case for other AI-empowered systems,66 this does
not apply to passive recommender systems.
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Challenge 7: System automation. The extracted automation patterns for each system revealed that software assistants
follow one or two main interaction patterns according to their type. To date, only two systems are completely automated
from information acquisition to action implementation. This implies that software engineers are almost always involved
in interacting with the system. Information analysis is fully automated for all software assistants, which aligns with our
definition of software assistant. When supported (only for active recommender systems), action implementation is fully
automated. Information acquisition is fully automated for informer systems, while it could either be poorly automated
or fully automated for recommender systems. It is worth noting that only systems with a fully automated information
acquisition step are triggered automatically, while the others require the users to trigger them manually. When supported
(for recommender systems), decision selection remains the least automated part of the process, being poorly automated.
The poor automation of these steps might be the consequence of technical limitations (such as user intent acquisition, or
knowledge access) or acceptability issues (users might want to keep control over the system).

Action point: Exploring new automation configurations for software assistants, while studying its impact on accept-
ability could deal with the concerns previously identified. While we believe that our classification for interaction patters
might be useful to tool vendors who want to include assistance systems into their software solution, we encourage
researchers to think outside the box and assess new interaction patterns for software assistants. Exploiting existing inter-
action patterns is in line with Jakob’s law,67 which states that users prefer your system to work the same way as all the
other systems they already know.

6.5 General discussion

Challenge 8: Professional software engineering versus end user software engineering. The majority of the assistants identi-
fied in this study target professional software developers by focusing on environments or functionalities that are part of
the professional practice of software engineering. This is the case for the use of VCS, advanced refactoring, software mod-
eling linked to code, graphical debugging tools, or users working in teams. The rest of the assistants mentioned in this
study, however, provide features that can go beyond the professional work environment, being useful to non-professional
developers practicing end-user software engineering (EUSE).68 In the EUSE definition, any user coding for himself and
not professionally for others is considered an end-user, who codes for his own benefit.69

In our study, systems for recommending code, interesting resources (files or Q&A), or model elements, can indeed
be useful to end users who develop software for their own use. The systematic study conducted by Barricelli et al.70

shows that these functionalities are implemented with techniques common to those used in EUSE, such as wizard-based,
text-based, model-based, natural language, template-based, or programming by demonstration. This same study shares
our observations, that there is a lack of works that address the use of other interaction techniques and media (voice, touch,
and the use of social media and crowdsourcing technologies) to design assistance systems. The paper from Sanctorum
et al.71 investigates several aspects of recommendation systems for EUSE, that we also extracted in our study. This is
especially the case for HCI indicators such as the nature of the output, the explanation of the recommendations, or the
ability to provide feedback about the result.

The results of Sanctorum et al. highlight the gap between our results and the expectations of potential end-users of
the assistants. They report that end-users would prefer recommendations to be mainly presented graphically while most
of the identified assistants of our study provided textual results. Similarly, the results indicate that end-users would like
results to be presented (mostly) in sidebars in the working environment, and that they should be able to provided rating
and feedback on both recommendations and explanations. Only 5% and 6% of the identified assistants respectively allow
users to provide feedback on the recommendations (none for the explanations), and provide an explanation about their
recommendation. Other research papers also highlight that the identified assistants do not respect design guidelines
for EUSE systems. Spahn et al.72 recommend EUSE working environments to be as natural as possible, so end-users
could be able to express their ideas and implement them in the same way as they think about them. The availability of
dedicated environments for end-users is not reflected in our findings (see Table 6). The state of the art in end-user software
engineering of Ko et al.69 discusses code recommendation for EUSE, and identify finding code and abstraction, or to know
they exist as a fundamental challenge for code reuse. To address this challenge, they recommend EUSE assistants to enable
users to (i) modify the code and to customize it for specific purpose, (ii) to enable the assistant to be tailored to adapt to
target end-users who will differ from one another, and (iii) to help end-users understand in advance whether some API or
library would be suitable for a task without causing issues in the future. The code (or resource) recommenders identified
in this study do not offer this expected level of adaptability.
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Action point: While some of the identified assistants can target both professional software engineers and end-users
performing EUSE, it seems that these assistants are not adapted for a non-professional use according to main research
results. As a consequence, future work should investigate if EUSE guidelines also applies to software engineering pro-
fessionals, which therefore would imply that the design of the identified assistants shall be improved in all cases. As a
takeaway message from this discussion, software editors should also take care to follow EUSE guidelines to broaden the
potential use of their software assistants for software engineering.

7 CONCLUSIONS

Since 2010, many types of assistants have become mainstream. For instance, voice assistants like Amazon Alexa and
Apple’s Siri and the exponential adoption of chatbots in e-commerce. In this article, we have studied whether this same
trend is happening in software engineering, that is, whether assistants are becoming a mainstream tool to speed up
software development projects. And if so, what the most popular types of assistants are and how they work.

We have observed that the number of research articles introducing fully finished and ready-to-use software assistants
for software design, construction and maintenance tends to decrease. Furthermore, the assistants featured in our set of
primary studies are not very well aligned with the software engineers’ workflows and preferred programming languages
and development environments. We also identified that these works do not take advantage from the recent progress of
research in the fields of ML or HCI for information systems. This potentially reduces the effectiveness of the created
systems, while limiting their usability and thus their acceptability. These two problems are even the more important as
the number of smart IDEs from industry continues to increase (e.g., IntelliCode,¶ Kite,# Codota,|| TabNine**), in contrast
to the number of related research papers.

Thus, research in the field of software assistants for software engineering seems to lag behind the practices and tech-
niques available to date. We see this is a strong opportunity to develop a new generation of assistants that embraces some
of the new research results (e.g., ML-based recommenders) and adapts them keeping in mind the findings challenges we
described above.

At the same time, we think it is important to pay attention to the evaluation of this new breed of assistants. Rigorous
research requires the replicability of the published work in order to compare and evaluate new solutions within the same
field. This does not seem to be the case yet in this domain. Only 11 articles out of the 47 primary studies have made
a dataset available to provide a benchmark for future comparisons. Finally, another important weakness that we have
detected is that that only 43% of these user-centric systems conducted an evaluation with real users.

With the results of this systematic mapping study, we would like to encourage researchers to address the challenges
that we have identified related to software assistants for helping with software development related activities.
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