
Vol.:(0123456789)

Formal Methods in System Design
https://doi.org/10.1007/s10703-023-00425-y

1 3

ORIGINAL ARTICLE

Fingerprinting and analysis of Bluetooth devices
with automata learning

Andrea Pferscher1 · Bernhard K. Aichernig1

Received: 1 April 2022 / Accepted: 16 April 2023
© The Author(s) 2023

Abstract
Automata learning is a technique to automatically infer behavioral models of black-box
systems. Today’s learning algorithms enable the deduction of models that describe com-
plex system properties, e.g., timed or stochastic behavior. Despite recent improvements in
the scalability of learning algorithms, their practical applicability is still an open issue. Lit-
tle work exists that actually learns models of physical black-box systems. To fill this gap in
the literature, we present a case study on applying automata learning on the Bluetooth Low
Energy (BLE) protocol. It shows that not only the size of the system limits the applicability
of automata learning. Also, the interaction with the system under learning creates a major
bottleneck that is rarely discussed. In this article, we propose a general automata learning
architecture for learning a behavioral model of the BLE protocol implemented by a physi-
cal device. With this framework, we can successfully learn the behavior of six investigated
BLE devices. Furthermore, we extended the learning technique to learn security critical
behavior, e.g., key-exchange procedures for encrypted communication. The learned mod-
els depict several behavioral differences and inconsistencies to the BLE specification. This
shows that automata learning can be used for fingerprinting black-box devices, i.e., charac-
terizing systems via their specific learned models. Moreover, learning revealed a crashing
scenario for one device.

Keywords Active automata learning · Model inference · Learning-based testing ·
Fingerprinting · Bluetooth Low Energy · IoT

1 Introduction

Bluetooth is a key communication technology in many different fields. Currently, it is
assumed that 4.7 billion Bluetooth devices are shipped annually and that the number will
grow to seven billion by 2026 [1]. This growth mainly refers to the increase of peripheral

 * Andrea Pferscher
 apfersch@ist.tugraz.at

 Bernhard K. Aichernig
 aichernig@ist.tugraz.at

1 Institute of Software Technology, Graz University of Technology, Inffeldgasse 16b/II, 8010 Graz,
Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00425-y&domain=pdf
http://orcid.org/0000-0002-9446-9541

 Formal Methods in System Design

1 3

devices that support Bluetooth Low Energy (BLE). With BLE, Bluetooth became also
accessible for low-energy devices. Hence, BLE is a vital technology in the Internet of
Things (IoT).

The amount of heterogeneous devices in the IoT makes the assurance of dependability
a challenging task, especially, since the insight into IoT components is frequently limited.
For example, Texas Instruments [2] motivates in a technical report that wired communica-
tion in a car can be replaced by BLE. Considering that automotive components are devel-
oped by many different suppliers, the used BLE chip and, more likely, the installed firm-
ware version might be unknown. Facing such challenges, the system under test must be
considered a black box.

Enabling in-depth testing of black-box systems is difficult, but can be achieved with
model-based testing techniques. Garbelini et al. [3] successfully used a generic model of
the BLE protocol to detect security vulnerabilities of BLE devices via model-based fuzz-
ing. However, they state that the creation of such a comprehensive model was challenging
since the BLE protocol is underspecified.

To overcome the possibly tedious and error-prone process of model creation, learning-
based testing techniques have been proposed [4]. Learning-based testing applies automata
learning algorithms to automatically infer a behavioral model of a black-box system. The
learned model could then be used for further verification and testing.

Existing work [5–10] applied learning-based testing to create behavioral models of com-
munication protocols like TLS, TCP or SSH. The learned models show behavioral incon-
sistencies to the specification and security vulnerabilities. In the literature, this technique
is also known as protocol state fuzzing. Motivated by promising results of protocol state
fuzzing, various automata learning algorithms have been proposed to extend learning for
more complex system properties like timed [11, 12] or stochastic behavior [13]. However,
few evaluations of these algorithms on implementations on physical devices exist.

In this article, we present a case study that applies automata learning on BLE devices.
Figure 1 illustrates the basic concept presented in this article. Our objective is to learn
the behavioral model of the BLE protocol implementation on a physical device. For this,
we propose a general automata-learning framework that automatically infers the behavioral
model of BLE devices. Our presented framework uses state-of-the-art automata learning

Fig. 1 Automata learning framework for the inference of behavioral models of BLE devices. The model is
generated via an active interaction through a system interface that includes an additional BLE device for
communication

Formal Methods in System Design

1 3

techniques. The learning algorithm actively queries the System Under Learning (SUL). To
enable an active interaction with the SUL, we propose a system interface that communi-
cates via BLE with the SUL. For this, we include in our interface an additional BLE device
that enables the sending of custom BLE packets. The system interface also allows handling
encrypted communication. Furthermore, we adapt the learning algorithm considering prac-
tical challenges that occur in learning real network components.

In our case study, we present our results on learning six different BLE devices. For all
six devices, we learn the behavior during the BLE connection establishment. In addition,
for three out of these six devices, we learn a model of the BLE pairing process. The pair-
ing process includes security critical behavior like the exchange of keys to establish an
encrypted communication. Based on our results, we discuss three different findings. First,
we observe that the implementations of the BLE stacks differ from device to device. Using
this observation, we show that active automata learning can be used to fingerprint black-
box systems. Second, the presented performance metrics show that not only does the sys-
tem’s size influences the performance of the learning algorithm, but also the creation of
a deterministic learning setup creates a significant overhead which has an impact on the
efficiency of the learning algorithm since we have to repeat queries and wait for answers.
Third, learning reveals robustness issues of the investigated devices. We observe that
devices might crash upon unexpected input sequences.

The paper includes the following contributions:

1. A learning framework that enables learning of BLE protocol implementations of periph-
eral devices. The framework including the learned models are available online [14].

2. An extension of the learning framework that enables the learning of the key-exchange
protocol during the BLE pairing procedure.

3. A case study that evaluates our framework on real physical devices.
4. A model-based manual analysis that checks if the devices conform to the BLE specifica-

tion.
5. A sequence found by learning that crashes a BLE device.
6. A sequence that allows fingerprinting the investigated BLE devices.

One future purpose of our work is to develop model-based testing techniques for BLE
using our learned models. Following the model-based fuzzing technique by Garbelini et al.
[3], in the next step, our learning framework could facilitate such a black-box fuzzer by
automatically learning the model. In our follow-up work [15], we have already applied the
learning framework that we propose in this article to generate a stateful black fuzzer for
BLE. Our learning-based fuzzing technique revealed inconsistencies to the BLE specifica-
tion and robustness issues in the investigated BLE devices.

This article is an extended version of our conference paper “Fingerprinting Bluetooth
Low Energy Devices via Active Automata Learning” [16] presented at Formal Methods -
24th International Symposium. Additional content and contributions in this journal article
include the extension of our learning framework for the BLE pairing procedure. For this,
we create an advanced learning interface that enables the establishment of encrypted com-
munication with the peripheral. Further extensions, include an advanced caching technique
that deals with non-deterministic behavior to increase the robustness of our proposed learn-
ing technique. Furthermore, we consider an additional BLE device in the case study and
the identification of a crashing sequence for a BLE device.

 Formal Methods in System Design

1 3

The article is structured as follows. Section 2 discusses the used modeling formalism,
active automata learning, and the BLE protocol. In Sect. 3, we propose our learning archi-
tecture, followed by the performed evaluation based on this framework in Sect. 4. Section 5
discusses related work and Sect. 6 concludes the article.

2 Preliminaries

2.1 Mealy machines

Mealy machines represent a neat modeling formalism for systems that create observable
outputs after an input execution, i.e., reactive systems. Moreover, many state-of-the-art
automata learning algorithms and frameworks [17, 18] support Mealy machines. A Mealy
machine is a finite state machine, where the states are connected via transitions that are
labeled with input actions and the corresponding observable outputs. Starting from an
initial state, input sequences can be executed and the corresponding output sequence is
returned.

Definition 1 A Mealy machine is a 6-tuple M = ⟨Q, q0, I, O, �, �⟩ where

• Q is the finite set of states
• q0 is the initial state
• I is the finite set of inputs
• O is the finite set of outputs
• � ∶ Q × I → Q is the state-transition function
• � ∶ Q × I → O is the output function

To ensure learnability, we require M to be deterministic and input-enabled. Hence,
� and � are total functions. Let S be the set of observable sequences, where a sequence
s ∈ S consists of consecutive input/output pairs (i1, o1),… , (ij, oj),… , (in, on) with ij ∈ I ,
oj ∈ O , j ≤ n and n ∈ ℕ defining the length of the sequence. We define sI ∈ I∗ as the cor-
responding input sequence of s, and sO ∈ O∗ maps to the output sequence. We extend �
and � for sequences. The state transition function �∗ ∶ Q × I∗ → Q gives the reached state
after the execution of the input sequence and the output function �∗ ∶ Q × I∗ → O∗ returns
the observed output sequence. We define two Mealy machines M = ⟨Q, q0, I,O, �, �⟩
and M

� = ⟨Q�, q�
0
, I,O, ��, ��⟩ as equivalent if there exists no sI ∈ I∗ such that

�
∗(q0, sI) ≠ �

�∗(q�
0
, sI) , i.e., the execution of all input sequences leads to the same output

sequences.

2.2 Active automata learning

In automata learning, we learn a behavioral model of a system based on a set of execu-
tion traces. Depending on the generation of these traces, we distinguish between two
techniques: passive and active learning. Passive techniques reconstruct the behavioral
model from a given set of traces, e.g., log files. Behavior that is not covered in the data
set, can only be approximated by generalizations. Hence, incomplete data presents a
problem for passive learning since the generalization for unusual behavior could be
inadequate. For example, ordinary log files might not cover the behavior of unusual

Formal Methods in System Design

1 3

input sequences. In our previous work [19], we showed that passive learning requires
a significantly larger data set than active learning to cover the same behavior with ran-
domly generated input sequences. Therefore, the attempt to include rare behavior via
random sequences requires a large number of samples. Active techniques, instead,
actively query the SUL. As a result, actively learned models are more likely to cover
rare events that cannot be observed from ordinary system monitoring.

Many current active learning algorithms build upon the L∗ algorithm proposed by
Angulin [20]. The original algorithm learns the minimal Deterministic Finite Autom-
aton (DFA) of a regular language. Angluin’s seminal work introduces the Minimally
Adequate Teacher (MAT) framework which we illustrate in Fig. 2. The framework
comprises two members: the learner and the teacher. The learner constructs a DFA
by questioning the teacher, who knows the SUL. The MAT framework distinguishes
between membership and equivalence queries. Using membership queries, the learner
asks if a word is part of the language, which can be either answered with yes or no by
the teacher. Based on these answers, the learner constructs an initial behavioral model.
The constructed hypothesis is then provided to the teacher to ask if the DFA conforms
to the SUL, i.e., the learner queries equivalence. The teacher answers equivalence que-
ries either with a counterexample that shows non-conformance between the hypothesis
and the SUL or by responding yes to affirm conformance. In the case that a counterex-
ample is returned, the learner uses this counterexample to pose new membership queries
and construct a new hypothesis. This iterative procedure is repeated until a conforming
hypothesis is proposed.

The L∗ algorithm has been extended to learn Mealy machines of reactive systems
[21–23]. Figure 2 includes the adaptions for learning Mealy machines, where member-
ship queries are replaced by output queries. For this, the learner asks for the output
sequence produced by a given input sequence. We assume that the teacher has access
to the SUL to execute inputs and observe outputs. Furthermore, Angluin’s L∗ algorithm
requires the SUL to be resettable to an initial state.

Teacher Learner

Conformance
Testing

Mapper

System
Under

Learning

build
hypothesis

equivalence query

yes/counterexample

abstract output query + resets

abstract query output
output
query +
resets

query
output

abstract
inputs +
resets

abstract
outputs

perform tests

passed/failed
tests

Fig. 2 An adapted version of the Minimally Adequate Teacher (MAT) framework proposed by Angluin
[20]. The adaptions include the learning of Mealy machines, the replacement of the equivalence oracle by
conformance testing, and the concept of abstraction by a mapper component. This figure has been adapted
from the illustration proposed by Aichernig et al. [4]

 Formal Methods in System Design

1 3

In practice, we cannot assume a perfect teacher who provides the counterexample that
shows non-conformance between the hypothesis and the SUL. To overcome this problem,
we use conformance testing to substitute equivalence queries. According to the definition
of Lee and Yannakakis [24], conformance testing assesses if an implementation conforms
to a specification. They assume that the specification is a Mealy machine and the imple-
mentation is a black box where outputs to the corresponding input sequences are observ-
able. For learning, we want to test if our learned model correctly defines the behavior of
our SUL. For this, we test the conformance between the SUL and the provided hypothesis.

We assume that the behavior of the SUL can be represented by a Mealy machine. For
this, we can define the conformance relation based on the equivalence of Mealy machines.
However, since the final number of states of the SUL is unknown, we can only approximate
conformance by a set of finite input/output sequences. For this, we say that the learned
hypothesis H = ⟨Q, q0, I,O, �, �⟩ conforms to the SUL I = ⟨Q�, q�

0
, I�,O�, ��, ��⟩ if for a

finite set of input sequences SI the following relation holds.

The goal in conformance testing during learning is to find an input sequence that violates
this conformance relation. In the case a counterexample is found, the teacher provides
such an input sequence to the learner as a counterexample to the conformance between the
hypothesis and the SUL. The learner uses this counterexample to refine the hypothesis by
performing further output queries. The refinement of the hypothesis is repeated until no
counterexample to the conformance between the hypothesis and the SUL can be found.

The complexity of automata learning depends on the number of states and the consid-
ered input alphabet. Especially, in the learning of communication protocols, considering
all possible inputs would make learning infeasible. Cho et al. [25] introduce the concept of
abstraction to make the learning of communication protocols feasible. For this, instead of
considering a large set of inputs, a smaller set of abstract inputs and outputs is considered
for learning. Hence, the learned model represents an abstraction of the SUL. Aarts et al.
[26] present the concept of abstraction with the introduction of a mapper component. The
purpose of the mapper is to translate the input and output actions respectively. For this,
abstract inputs for learning are translated by the mapper into concrete inputs that can be
executed on the SUL. For outputs, the mapper translates the received concrete outputs into
abstract outputs. Figure 2 illustrates the placement of the mapper in the MAT framework.

2.3 Bluetooth Low Energy

The BLE protocol is a lightweight alternative to the classic Bluetooth protocol, specially
designed to provide a low-energy alternative for IoT devices. The Bluetooth specification
[27] defines the connection and pairing protocol between two BLE devices according to
different layers of the BLE protocol stack. Figure 3 shows the initial communication mes-
sages of two BLE devices that first establish a connection and then exchange parameters to
establish an encrypted communication. We distinguish between the peripheral and the cen-
tral device. An example of a central device would be a smartphone that wants to connect
with a peripheral device, e.g., a smart watch. In the remainder of this article, we refer to the
central device simply as central and to the peripheral device as peripheral.

The peripheral sends advertisements to show that it is available for connection with
a central. According to the BLE specification, the peripheral is in the advertising state.
If the central scans for advertising devices in the scanning state. For this, the central

(1)∀sI ∈ SI ∶ �
∗(q0, sI) = �

�∗(q�
0
, sI)

Formal Methods in System Design

1 3

sends a scan request (����_���) to the peripheral, which responses with a scan response
(����_���). In the next step, the central changes from the scanning to the initiating state
by sending the connection request (����������_���). If the peripheral answers with a
connection response (����������_���), the peripheral and central enter the connection
state. After the connection, the negotiation on communication parameters starts. Both,
the central and peripheral can request features or send control packets. These request
and control packets include maximum packet length, maximum transmission unit
(MTU), BLE version, and feature exchanges. As noted by Garbelini et al. [3], the order
of the feature requests is not defined in the BLE specification and can differ for each
device.

After the parameter negotiation, the central initiates the pairing procedure by send-
ing a pairing request to peripheral, which is answered by a pairing response. The BLE
protocol distinguishes two pairing methods: legacy and secure pairing. The difference
between the two pairing methods is in the generation of encryption keys. Legacy pair-
ing uses priorly exchanged parameters to create a session key, whereas secure pairing

central
(initiator)

peripheral
(responder)

advertisements

scan req

scan rsp

connection req

connection rsp

{length, feature, version, MTU} req

{length, feature, version, MTU} rsp

legacy pairing req

legacy pairing rsp

confirmi

confirmr

randomi

randomr

encryption req
encryption rsp

start encryption req
〈start encryption rsp〉

〈encryption info, signing info, master identification〉

scanning

initiating

connection

randomi,
confirmi
generation

check
confirm

session key
generation

encryption
enabled

advertising

connection

randomr,
confirmr
generation

check
confirm

session key
generation

encryption
enabled

Fig. 3 Communication between a BLE central and peripheral device to establish a connection. After the
connection is established, the pairing procedure starts. In the legacy pairing method, the central and periph-
eral exchange values to generate a session key that is used for an encrypted communication (indicated by
⟨…⟩). The sequence diagram is taken from Garbelini et al. [3] and extended by the message sequence for
the legacy pairing procedure taken from the BLE specification [27]

 Formal Methods in System Design

1 3

requires a public/private key exchange to establish a secure encrypted connection. In the
remainder of this article, we will only consider legacy pairing, since this pairing mode
was implemented by all investigated devices.

The legacy pairing procedure starts with sending the corresponding request
(������_�������_���). The BLE specification [27] refers to the device that sends the pair-
ing request as initiator and to the recipient as responder. In our case, the central is always
the initiator and the peripheral the responder. If the responder accepts to pair, a pairing
response (������_�������_���) is provided. Then both parties generate a random number
and a confirm value, where the calculation of the confirm value takes connection param-
eters and the random value into account. First, both parties distribute the confirm value.
Next, the initiator sends its generated random value. The responder checks if the con-
firm and random value of the initiator match. If the values match, the responder returns
its random value and the initiator checks whether the values match. Afterwards, the ini-
tiator shares its part of the encryption key and the initialization vector by forwarding an
encryption request (����������_���). The responder first sends the corresponding response
(����������_���) and then a request to start the encryption (�����_����������_���). The initi-
ator uses the received key parts and transfers an encrypted response (�����_����������_���)
to the encryption start request. For encryption AES-CCM [28] is used. After the responder
receives the encrypted �����_����������_��� , the central and peripheral communication
is encrypted. An established communication can be terminated via a termination indica-
tion (�����������_���) and an exchanged encryption key can be renewed by the encryption
pause procedure �����_�����������_���.

3 Learning setup

Our objective is to learn the behavioral model of the BLE protocol implemented by the
peripheral device. The learning setup is based on active automata learning. Following
related protocol state fuzzing techniques [5–10], we assume that unusual input sequences
that are executed during active learning test the robustness of the SUL. Additionally, we
aim to reveal characteristic behavior that enables fingerprinting of the peripheral. Accord-
ing to Sect. 2.3, we can model the BLE protocol as a reactive system.

Our objective is to learn the behavior during the connection and pairing procedure as
depicted in Fig. 3. However, the first experiments indicate that especially the pairing pro-
cedure leads more frequently to non-deterministic behavior which hampers the learnability
of BLE devices. Therefore, we separated the learning of the connection and pairing proce-
dure. Our first learning setup considers inputs that are required to establish a connection
until a pairing request initiates the pairing procedure. Related to Fig. 3, this connection
procedure includes the first four request/response steps. The second learning setup con-
siders only the inputs required to establish an encrypted communication, i.e., the request/
response steps of the pairing procedure, including the pairing request. Hence, both models
contain the pairing request.

Even though the considered inputs are different, we apply the same learning architec-
ture for both learning setups. Figure 4 depicts our learning architecture which is based on
the architecture for network protocols proposed by Tappler et al. [8]. We extended their
proposed learning architecture with an additional learning interface. This learning inter-
face should enable the robust learning of a behavioral model. This additional layer ensures
an reliable reset and query execution on the SUL. Fig. 4 includes the five components of

Formal Methods in System Design

1 3

the learning interface: learning algorithm (Sect. 3.1), learning interface (Sect. 3.2), mapper
(Sect. 3.3), BLE central (Sect. 3.4), and BLE peripheral (Sect. 3.5). In the following sec-
tions, we describe each component of the applied learning architecture.

3.1 Learning algorithm

The applied learning algorithm is an improved variant of the L∗ algorithm for Mealy
machines [21–23]. Since L∗ is based on an exhaustive input exploration in each state, we
assume that it is beneficial for performing a behavioral analysis and fingerprinting. Rivest
and Schapire [29] proposed the improved L∗ version that contains advanced counterexam-
ple processing. This advanced counterexample processing reduces the number of required
output queries in case a counterexample to the conformance between the SUL and pro-
vided hypothesis is found. Especially for long counterexamples, this improved L∗ version
decreases the number of required queries.

Since Python enables the usage of convenient libraries for the composition of BLE
packets, we aim at a consistent learning framework integration. At present, AALpy [18] is
a novel active learning library written in Python. AALpy implements state-of-the-art learn-
ing algorithms and conformance testing techniques, including the improved L∗ variant that
is considered here. Since the framework implements equivalence queries via conformance
testing, we assume that the conformance relation defined in Eq. 1 holds. To create a suf-
ficient test suite, we combine random testing with state coverage. For this, the generated
set of input sequences accesses each state in the learned hypothesis. In each state, we then
execute a random set of inputs. The applied test-case generation technique generates for
each state in the hypothesis ntest input traces. The generated input traces of length nlen com-
prise the input prefixes to the currently considered state concatenated with a random input
sequence. Since the final number of states of the minimal Mealy machine that represents
the SUL is unknown, the parameters ntest and nlen can only be approximated. The approxi-
mation is a trade-off between sufficient conformance testing to find a counterexample and
an efficient runtime of the learning algorithm.

3.2 Learning interface

The applied L∗-based learning algorithm requires the system to be resettable and to behave
deterministically. These requirements hamper the straightforward application of learn-
ing physical devices via a wireless network. To overcome these issues, we introduce an

Learning
Algorithm

Learning
Interface

Mapper BLE
central

BLE
peripheral

abstract
output
query

abstract
query
output

abstract
input

abstract
output

concrete
input

concrete
output

BLE
packet

BLE
packet

Fig. 4 We extended the learning architecture of Tappler et al. [8] with a learning interface that enables the
robust learning of an abstracted model from a BLE device

 Formal Methods in System Design

1 3

additional layer that ensures that the SUL is reliably reset and that the observed non-deter-
ministic behavior is resolved.

3.2.1 Guarantee reliable resets

The learning algorithm expects that every performed query is executed from an initial
state. Hence, we require that the SUL can be reset to an initial state. Lee and Yannaka-
kis [24] defined a reset to be reliable if this reset action transfers the system to the initial
state independent from the current state. We assume that a hard reset reliable resets the
peripheral device. Since a hard reset after each query would make active learning a tedious
process, we assume that the central can reset the device via BLE messages. For this, we
assume that a ����_��� or a �����������_��� resets the peripheral in any state to the adver-
tising state as shown in Fig. 3. Depending on which part of the protocol we aim to learn,
i.e., the connection or the pairing procedure, we consider different initial states. The initial
state for the connection procedure is the advertising state. For the pairing procedure, we
assume that the connection is established and all required parameters are negotiated such
that the pairing procedure can be initiated.

The learning library AALpy can perform resetting actions before and after the output
query execution. Like in other automata learning libraries [30], we denote the method that
is called before executing the output query as pre and the method after the output query as
post. In any case, we want to terminate a possibly established connection after the execu-
tion of an output query. For this, we perform a termination request in the post method.
The termination request is specific BLE packet that indicates the device that sends this
indication wants to terminate the connection. To ensure a proper reset before executing the
output query, a scan request is performed in the pre method which checks if the device
distributes advertisements.

For learning the pairing procedure, we extend the pre and post method. In the pre
method, we establish a valid connection, which includes the first three steps of Fig. 3. After
this procedure, the peripheral should be ready to accept a pairing request from the central.
In the post method, we initiate the pause encryption procedure if encryption is enabled.
This procedure indicates that the encryption key shall be changed. Afterward, we terminate
the connection as described before.

We assume that this reset procedure reliably resets the SUL to the assumed initial state
if the peripheral responds to our resetting BLE messages. If do not receive a response, we
repeat this resetting procedure nerror times. For example, we repeat the pre method as long
as we found advertisements sent by the peripheral. After nerror repetitions, we abort the
learning procedure.

Another problem that hampers a reset is that some devices stop sending advertisements.
This could be the case if we send a large number of unexpected BLE packets to the device,
even if we are not connected. In active automata learning this might be the case, e.g., if we
test conformance. For this, we use the resetting procedure also to establish and terminate a
valid connection before we execute an output query. This should avoid the peripheral from
running into a timeout and stop sending advertisements.

Formal Methods in System Design

1 3

3.2.2 Handling non‑determinism

Our learning interface also has to deal with non-deterministic behavior. In general, we
assume that the BLE devices behave deterministically. However, the influence of environ-
mental conditions on learning a wireless communication protocol can introduce non-deter-
minism. We might experience lost packets or delayed responses. Packet loss is critical for
packets that are necessary to establish a connection. For example, the loss of a connection
request packet prohibits the establishment of a connection between the two BLE devices.
As a result, all responses to further requests are answered differently than for a valid con-
nection. The same problem arises for BLE packets that arrive delayed. For example, con-
sider the following output query.

The expected query output would be the following.

However, if the peripheral device receives the feature response delayed or if the response
got lost, the peripheral might reject the pairing request. Hence, the received query out-
put would look different. In this case, a possible example would be the following output
sequence.

To deal with non-deterministic behavior that occurs during the execution of output queries,
we repeat output queries. However, repeating every output query several times would make
learning very inefficient. For this, we introduce an enhanced strategy that aims at the sav-
ing of queries. Under the assumption that packet loss or delayed messages occur rarely, we
repeat queries only if we observe non-deterministic behavior. For this, our learning inter-
face utilizes the caching strategy of the used learning library AALpy. AALpy provides a
tree structure that collects the performed inputs and the corresponding observed outputs.
Every observed output on the SUL is checked against the stored output in the cache. We
start to collect possible outputs for a node in the tree only in the case that the outputs do
not match. After the collection of ncache outputs for that node, we select the most frequently
observed output. If the output changes, the cache gets updated. Note that the update might
violate the consistency of the data structure for learning. However, the performed coun-
terexample processing proposed by Rivest and Schapire [29] during the conformance test
takes care of any inconsistencies. The majority-based update is only done once. After-
ward, if we observe non-determinism, we simply repeat the output query. Again, we define
an upper limit for a repeating non-deterministic behavior by a maximum of nnondet query
executions.

3.3 Mapper

The mapper component serves as an abstraction mechanism, since considering all possi-
ble BLE packets for learning would not be feasible. Therefore, we use a generic input and
output alphabet to learn a behavioral model on a more abstract level. Following Fig. 4, the
learning algorithm generates output queries that comprise abstract input sequences. The
learning interface receives these abstract input sequences and forwards the single abstract

����_��� ⋅ ����������_��� ⋅ �������_��� ⋅ �������_���

��� ⋅ �������_��� ⋅ ���� ⋅ �������_���

��� ⋅ �������_��� ⋅ ���� ⋅ ������

 Formal Methods in System Design

1 3

inputs to the mapper. The mapper then translates them to concrete inputs that can be exe-
cuted by the central. After the central received a concrete input action, the central returns
the corresponding concrete output. This concrete output is then taken by the mapper and
translated to a more abstract output that is used by the learning interface to perform the
corresponding actions for robust learning. The processed abstract output sequence is then
used by the learning algorithm to construct and test the hypothesis.

The abstracted input alphabet for learning the connection proce-
dure is defined by IA

C
= {����_���, ����������_���, ������_���, ������_���,

�������_���, �������_���, �������_���,���_���, ������_�������_���} and for the pairing pro-
cedure IA

P
= {������_�������_���, ���� ���, ������, ����������_���, �����_����������_���} .

Considering the input/output definition of reactive systems, it may be unusual to include
responses in the input alphabet. For our setup, we included the feature and length response
as inputs. In Sect. 2.3, we explained that after the connection request of the central, also the
peripheral might send control packets or feature requests. To explore more behavior of the
peripheral, we have to reply to received requests from the peripheral. In a learning setup,
the inputs �������_��� , ������_��� , and �����_����������_��� are responses from the central
that we consider as additional inputs.

The abstract inputs of IA
C

 and IA
P

 are then translated to concrete BLE packets that
can be sent by the central to the peripheral. For example, the abstract input ������_���
is translated to a BLE control packet including a corresponding valid command of
the BLE protocol stack. For the construction of the BLE packets, we use the Python
library ScApy [31]. In ScApy syntax, the BLE packet for the ������_��� can be defined
as ����∕����_����∕����_����∕��_������_���(max_tx_bytes,…) , where
max_tx_bytes is a field that is concretized by the mapper component. To concretize fields,
we mainly select values from a set of preset values defined by ScApy. These preset values
conform to standard values that enable the establishment of a connection.

For the translation of outputs, the mapper receives a list of concrete BLE packets
from the central device. The central provides a list of packets since the peripheral
device answers with multiple BLE packets to a single BLE request. The set of
received packets is parsed using the ScApy library. In the following example, we receive
for the sent �������_��� a list of different BLE packets.
req = ����∕����_����∕����_����∕��_�������_���

rsp = {����∕����_����,

����∕����_����∕����_����∕��_������_���,

����∕����_����,

����∕����_����,

����∕����_����∕�����_��∕���_��∕���_���
	���_���_�������,

����∕����_����,

����∕����_����}
For simplicity, the example hides concrete field values and illustrates the

received BLE packets conforming to the ScApy syntax. This list of output pack-
ets will be merged into a single output by concatenating the packets in alphabeti-
cal order to one output string. This creates deterministic behavior, even though pack-
ets might be received in a different order. For the example above, the output would
be ���_��������_���_�������,���_��,��
�,��
�_	��
,��
�_����,
�����_���,��_������_��� . For the abstraction of the BLE packets, we use the nam-
ing provided by ScApy. One exception applies to the response on ����_��� , where two pos-
sible valid responses are mapped to one scan response (���). If the central device returns

Formal Methods in System Design

1 3

an empty list of BLE packets, the mapper returns the empty output which is denoted by the
string �����.

In the pairing procedure, the central and the peripheral device exchange key information
over a multistage response/request dialog. Since the concrete values of the packets in this
key-exchange procedure depend on the previously exchanged packets, we cannot use preset
values from ScApy for the concretization. Also randomly guessing the concrete values for
the key exchange would not be feasible to successfully establish an encrypted connection.
Otherwise, the key-exchange procedure would be insecure, since the keys do not depend
on randomness or could be brute-forced. Due to this key exchange, we require the mapper
to be stateful. For this, the mapper stores and collects messages that are later required to
establish an encrypted communication, e.g., received parts of the key information. Further-
more, the mapper memorizes if the encryption is enabled. In the case of encrypted commu-
nication, the mapper encrypts and decrypts transmitted messages.

3.4 BLE central

The BLE central component comprises the adapter implementation and the physical central
device. We use the Nordic nRF52840 USB dongle and the Nordic nRF52840 Development
Kit as central. Our learning setup requires sending BLE packets stepwise to the peripheral
device. For this, our implementation follows the setup proposed by Garbelini et al. [3].
We use their provided firmware for the Nordic nRF52840 devices and adapted their driver
implementation to perform single steps of the BLE protocol.

The central device receives from the mapper a concrete BLE packet, which is then
transmitted to the peripheral device. Then the central device checks for responses if the
peripheral responds to the transmitted packet. As mentioned in the previous section, the
peripheral can respond with several packets. For this, the central listens nrsp

min
 times for any

responses. If after nrsp
min

 responses no convincing response has been returned, we continue
listening for responses. We define a response as convincing if the received packet contains
more than an empty BLE data packet, i.e., ����∕����_���� . However, the maximum
number of listening attempts is limited by nrspmax . The selection of the parameters nrsp

min
 and

n
rsp
max depends on the environmental conditions in which the experiment is executed. For

example, we need to consider the response time and distance of the SUL.

3.5 BLE peripheral

The BLE peripheral represents the black-box device that we want to learn, i.e., the SUL.
We assume that the peripheral advertises and only interacts with our central device. For
learning, we require that the peripheral is resettable and that the reset can be initiated by
the central. After a reset, the peripheral should be again in the advertising state.

4 Evaluation

We evaluated the proposed automata learning setup for the BLE protocol in a case study
consisting of six different BLE devices. The learning framework is available online [14].
The repository contains the source code for the BLE learning framework, the firmware for
the Nordic nRF52840 Dongle and Nordic nRF52840 Development Kit, the learned autom-
ata, and the learning results.

 Formal Methods in System Design

1 3

4.1 BLE devices

Table 1 lists the six investigated BLE devices. In the remainder of this section, we refer to
the BLE devices by their System on a Chip (SoC) identifiers. For the case study, we con-
sidered devices from different manufacturers. Some of the devices were already included in
the case study of Garbelini et al. [3]. We extended the collection with well-known boards,
e.g., the Raspberry Pi 4. Since one of our objectives is to identify the SoC based on the
observed behavior, we included different SoCs from one manufacturer. All evaluated SoCs
support the Bluetooth v5.0 standard [27]. To enable BLE communication, we deployed
and ran an exemplary BLE application on the SoC. The considered BLE applications were
either already installed by the semiconductor manufacturer or taken from examples in the
semiconductor’s specific software development kits.

4.2 BLE Learning

Our learning framework is built upon Python 3.9.0. For our learning setup, we used the
Python learning library AALpy [18] (version 1.0.1). For the composition of the BLE pack-
ets, we used a modified version of the Python library ScApy [31] (version 2.4.4). The used
modifications are available starting from ScApy v2.4.5. As BLE central device, we used the
Nordic nRF52840 Dongle and the Nordic nRF52840 Development Kit. The deployed firm-
ware for the USB dongle was taken from the SweynTooTh repository [32].

As explained in the previous section, we required a special learning interface to learn
the communication protocol implemented on a physical device. For this, we extended some
components of the AALpy framework to enable robust automata learning. Our learning
interface modified the implementation of the conformance testing technique and the used
caching mechanism. These modifications of our framework handled connection errors and
non-deterministic outputs according to our explanation in Sect. 3. To enable an efficient
but also robust learning environment, we set the maximum number of consecutive con-
nection errors to nerror = 20 , the size of the non-deterministic cache to ncache = 20 , and
the number of consecutive non-deterministic output queries to nnondet = 20 . These num-
bers were high enough to recover from faults but low enough to detect early that a device
stopped responding.

For conformance testing, we copied the class StatePrefixEqOracle from AALpy
and added our error-handling behavior. The number of performed queries per state is set
to ntest = 10 and the number of performed inputs per query is set to nlen = 10 . These num-
bers were set according to the abstract input alphabet size, which included nine different

Table 1 Evaluated BLE devices

Manufacturer (Board) SoC Application

Texas Instruments (LAUNCHXL-CC2640R2) CC2640R2 CC2640R2 LaunchPad
Texas Instruments (LAUNCHXL-CC2650) CC2650 Project Zero
Texas Instruments (LAUNCHXL-CC26X2R1) CC2652R1 Project Zero
Cypress (CY8CPROTO-063-BLE) CYBLE-416045-02 Find Me Target
Cypress (Raspberry Pi 4 Model B) CYW43455 bluetoothctl
Nordic (decaWave DWM1001-DEV) nRF52832 Nordic GATTS

Formal Methods in System Design

1 3

inputs. We stress that the primary focus of this article was an initial exploration of the state
space and to fingerprint the investigated BLE SoCs. Therefore, it was sufficient to perform
a lower number of conformance tests. However, we recommend increasing the number of
conformance tests if a more accurate statement about the conformance of the model to the
SUL is required.

In Sect. 3, we explained that a sent BLE message leads to multiple responses. These
responses could be distributed over several BLE packets. Hence, our central listened for
a minimum number of responses nrsp

min
 but stopped listening after nrspmax attempts. For our

learning setup, we set for five out of six SoCs nrsp
min

= 10 and nrspmax = 20 . This setup ena-
bled robust and fast learning for five SoCs, since none of the devices responded with more
than ten different outputs, but was able to send a meaningful response within twenty lis-
tening attempts. For the sixth device, the nRF52832, we used nrsp

min
= 20 and nrspmax = 30

since our experiments show that this device requires more time to respond. Furthermore,
we applied a different parameter setup for the scan request and termination indication that
enables a fast, but decent reset. For this, we set nrsp

min
= 5 and nrspmax = 50 . For the termina-

tion indication, we set nrsp
min

= n
rsp
max = 1 . Note that the termination indication was not part of

the abstract input alphabet. Hence, the purpose was not to capture the output behavior on
this request but simply to reset the connection. This justified the low number of listening
attempts for the output.

4.2.1 Connection procedure evaluation

All experiments for learning the connection procedure were performed on an Apple Mac-
Book Pro 2019 with an Intel Quad-Core i5 operating at 2.4GHz and with 8GB RAM, run-
ning macOS Catalina (Version 10.15.7).

Table 2 shows the learning results for five out of the six investigated SoCs. For two
devices, CC2652R1 and CYW43455, we excluded the scan and connection request from
the input alphabet. For both devices, we observed that a scan request did not always trig-
ger the expected reset of the connection. Therefore, we needed to check if a connection
could be established. For this, we learned the behavior after the execution of a connection
request. Table 2 does not include the results of CC2640R2, since we were not able to learn

Table 2 Learning results of five out of six evaluated BLE SoCs. The †-symbol indicates that device was
reset to the state where a connection request was already performed. Consequently, no connections errors
occur during learning for these devices

CC2650 CC2652R1† CYBLE-
416045-02

CYW43455† nRF52832

States 5 4 3 16 5
Total Time in minutes (min)
Learning (min)
Conformance Checking (min)

23.61
18.22
5.39

5.57
3.46
2.11

12.00
9.41
2.59

65.12
51.07
14.05

126.24
73.80
52.44

Output Queries
Output Query Steps

405
1542

196
588

243
747

784
3136

405
1459

Conformance Tests
Conformance Test Steps

59
626

44
467

32
344

164
1958

50
580

Connection Errors
Non-Deterministic Outputs

526
5

–
1

292
0

–
3

459
1

 Formal Methods in System Design

1 3

a deterministic model of CC2640R2 using the defined input alphabet. We discuss possible
reasons for the non-deterministic behavior later. For all other SoCs, we learned a determin-
istic Mealy machine using the complete input alphabet.

We needed only one learning round for each SUL, i.e., we did not find a counterexample
to conformance between the initially created hypothesis and the SUL. The learned behav-
ioral models range from a simpler structure with only three states (CYBLE-416045-02) to
more complex behavior that can be described by 16 states (CYW43455).

The learning of the largest model regarding the number of states (CYW43455) took a
bit more than one hour, whereas the smallest model (CYBLE-416045-02) could be learned
in twelve minutes. Even if the nRF52832 did not have the largest state space, the runtime
was significantly higher compared to devices with the same state space (CC2650). The
results presented in Table 2 show that learning the nRF52832 took more than five times
as long as learning the CC2650. The difference in runtime occurred due to the extended
waiting time for the nRF52832. This result indicates that the scalability of active automata
learning did not only depend on the input alphabet size and state space of the SUL. Rather,
we assume that the overhead to create a deterministic learning setup, e.g., repeating queries
or waiting for answers, also influenced the efficiency of active automata learning.

Conforming to the state space, the number of performed output queries and steps
increased. For the devices where we considered the connection input, also the number of
connection errors seemed to align with the complexity of the behavioral model. This obser-
vation emphasized our assumption that message loss regularly occurs. This justified the
overhead of a decent error-handling procedure to ensure that the SUL is adequately reset to
the initial state before the output query is executed.

Figure 5 shows the learned model of the CC2650 and Fig. 6 of the nRF52832. To
provide a clear and concise representation, we merged and simplified transitions. The +
-symbol summarizes input and output labels, since depicting all labels for all nine consid-
ered inputs would make the models hardly readable. The unmodified learned models of
all SoCs considered in this case study are available online [14]. The comparison between
the learned models of the CC2650 (Fig. 5) and the nRF52832 (Fig. 6) shows that even

q0 q1 q4

q2

q3

connect req/DATA

scan/ADV

pairing req/
PAIRING RSP

connect req/DATA
pairing req/FAILED

version req/VERSION IND

pairing req/
PAIRING RSPversion req/

VERSION IND

connect req/
DATA

connect req/DATA

scan/ADV

scan/ADV

scan/ADV
+/EMPTY

scan/ADV

+/+

length rsp/UNKNOWN

length rsp/UNKNOWN
+/+

+/+

length rsp/UNKNOWN

+/+
length rsp/UNKNOWN

Fig. 5 Simplified learned model of the CC2650. Inputs are lowercased and outputs are capitalized. For a
clear presentation, outputs are abbreviated and we highlight the behavior on some selected input/output
labels. Other inputs and outputs are summarized by the +-symbol. The complete model is available online
[14]

Formal Methods in System Design

1 3

models with the same number of states describe different BLE protocol stack implementa-
tions. We highlighted in red for both models the transitions that show a different behavior
on the input ������_��� . The nRF52832 responded to an unrequested length response only
with a BLE data packet and then completely reset the connection procedure. Therefore,
executing an unexpected length response on the nRF52832 led to the initial state akin to
the performance of a scan request. The CC2650, instead, reacted to an unrequested length
response with a response containing the packet ��_�������_��� and remained in the
same state.

Figure 7 illustrates the learned model of the CC2652R1. Note that the initial state q0
describes the behavior after the peripheral received a connection request. Therefore, the
model defines the behavior of the parameter negotiation including the initiation of the
pairing procedure. In our recent work [15], we already reported that the learned model

q0 q1 q4

q2

q3

connect req/SM RSP

scan/ADV
length rsp/DATA

version req/
VERSION IND

mtu req/MTU RSP
version req/VERSION IND

mtu req/
MTU RSP

connect req/
SM RSP

connect req/
SM RSP

connect req/SM RSP

scan/ADV
length rsp/DATA

scan/ADV
length rsp/DATA

scan/ADV
length rsp/DATA

scan/ADV
+/EMPTY

+/+

mtu req/MTU ERR
+/+

+/+

version req/DATA

+/+
version req/DATA
mtu req/MTU ERR

Fig. 6 Simplified learned model of the nRF52832. Labels are abbreviated and summarized. The complete
model is available online [14]. Unlike the model of CC2650, presented in Fig. 5, the nRF52832 resets the
connection after an unexpected length response

Fig. 7 Model learned of
CC2652R1. For clarity, some
transitions are not displayed.
The complete model is available
online [14]

q0

q1 q2

q3

pairing req/
PAIRING RSP

pairing req/
FAILED

feature rsp/
LENGTH REQ

length rsp/
DATA

pairing req/
FAILED

pairing req/
PAIRING RSP

feature rsp/LENGTH REQ

length rsp/
DATA

+/+
version req/

VERSION IND

version req/
VERSION IND

+/+

version req/
VERSION IND
+/+

version req/
VERSION IND
+/+

 Formal Methods in System Design

1 3

indicates inconsistency with the BLE specification. According to the BLE specification
[27], a version indication should be only answered once. As indicated by the red transi-
tions, the CC2652R1 always responded with a version indication.

Using the learning setup of Sect. 3, we could not learn the CC2640R2. Independent
from the adaption of our error handling parameters, we always observed non-deterministic
behavior. More interestingly, the non-deterministic behavior could repeatedly be observed
on the following output query.

 In earlier stages of the learning procedure, we observed the following output sequence
after the execution of the inputs.

 Later in learning, we never again received any feature response for the input �������_��� if
we executed this output query. The observed outputs always corresponded to the following
sequence.

We assume that the execution of the pairing request changed the internal behavior

of the SUL. Hence, after the establishment of a certain number of pairing requests, the
device failed to respond to provided requests. If we removed one of the inputs �������_��� ,
������_��� , or �������_��� , our learning setup successfully learned a deterministic model.
Table 3 shows the learning results for the CC2640R2 with the adapted input alphabets.
Compared to the results in Table 2, we observed more non-deterministic behavior than for
the other devices, which led to repetitions of output queries.

4.2.2 Pairing procedure evaluation

All experiments for learning the pairing procedure were performed on an HP EliteBook
840 G2 with an Intel i5-5200 operating at 2.2 GHz and with 16GB RAM, running Ubuntu
20.04.2 LTS. We required a Linux-based operating system since we used the security

����������_��� ⋅ �������_��� ⋅ ������_��� ⋅ ������_��� ⋅ �������_���

��_������_��� ⋅ ��_�������_��� ⋅ ����_���� ⋅ ��_������_��� ⋅ ��_�������_���

��_������_��� ⋅ ��_�������_��� ⋅ ����_���� ⋅ ��_������_��� ⋅ ����_����

Table 3 The non-deterministic behavior of the CC2640R2 BLE SoC disabled learning considering the
entire input alphabet. The table shows the results of learning with a reduced input alphabet

No �������_��� No ������_��� No �������_���

States 6 11 11
Total Time (min)
Learning Time (min)
Conformance Checking Time (min)

26.40
16.94
9.46

47.57
30.73
16.84

40.29
28.29
11.70

Output Queries
Output Query Steps

384
1474

705
3143

704
3143

Conformance Tests
Conformance Test Steps

61
712

115
1406

111
1371

Connection Errors
Non-Deterministic Outputs

449
1

822
10

821
2

Formal Methods in System Design

1 3

manager interface provided by SweynTooTh [32]. This library creates valid field values for
establishing encrypted communication. The provided module is implemented in C/C++
and uses the BlueZ library, which is a Bluetooth stack implementation for Linux.

We slightly adapted the parameter configuration for learning the pairing procedure.
Since we observed for the devices more non-deterministic behavior, we set nerror = 5 ,
ncache = 3 , and the number of consecutive non-deterministic output queries to nnondet = 3 .
These numbers are lower than for learning the connection procedure, but in the case of
a repeated connection error or non-deterministic error, we did not immediately abort the
learning procedure. Instead, the learning framework requested to hard reset the physical
device. After the user performed a hard reset the learning procedure continued.

Table 4 presents the learning results of the pairing procedure. For this evaluation, we
selected three out of the six devices, since these three devices supported the legacy pair-
ing procedure and acted reasonably reliable. The learned models have between six and
eleven states and the learning procedure took between 0.9h and 5.2h. Compared to the
learning of the connection procedure, we observed significantly more non-deterministic
outputs. We also extended Table 4 by the number of cached values that were changed
during learning and the number of performed hard resets.

The results show that the CC2640R2 and the CC2650 required hard resets, but the
reasons for the hard reset were different. In the case of the CC2640R2, we observed that
the SoC stopped accepting pairing requests after a certain amount of exchanged mes-
sages. Hence, repeated non-deterministic errors occur. More interestingly, the CC2650
required a hard reset since the device stopped responding to any request. The following
sequence leads to the crash of the device:

After the encryption request, the peripheral expected an encrypted response to the
sent encrypted start request. However, our device sent a different unexpected encrypted
message. After performing the reset, the CC2650 does not return to the advertising
state. This shows that already the execution of an unexpected input sequence can trigger
faulty behavior.

����������_��� ⋅ �������_��� ⋅ ���� ��� ⋅ ������⋅

����������_��� ⋅ ⟨�����_����������_���⟩ ⋅ ���������_���

Table 4 Learning results of three out of six evaluated BLE SoCs

CC2640R2 CC2650 CYW43455

States 11 10 6
Total Time (min)
Learning Time (min)
Conformance Checking Time (min)

133.01
116.95
16.06

312.37
201.34
111.03

52.72
38.83
13.89

Output Queries
Output Query Steps

487
3142

453
2869

223
1012

Conformance Tests
Conformance Test Steps

110
273

100
601

60
287

Non-Deterministic Outputs
Cache Updates
Hard Resets

133
1
6

80
3
11

29
0
0

 Formal Methods in System Design

1 3

Figure 8 presents the model of the pairing procedure of the CYW43455. We see that
the message sequence conforms to the sequence chart shown in Fig. 3. Encryption is
enabled via the red transition between states q3 and q4 . Afterward, only encrypted mes-
sages can be distributed. The self-loops for every state show that an unexpected input
does not cancel the pairing procedure.

Figure 9 describes the behavior of the CC2640R2. Compared to Fig. 8, we see that
unexpected inputs might revert the pairing procedure to previous states. The encryption is
enabled after the transition from states q3 and q4 is performed. In contrast to the behavior of
CYW43455, we still could initiate further pairing procedures after keys have been already
exchanged. Our presented learning results show that behavioral differences also occur dur-
ing the pairing procedure and that the models also enable to fingerprint the tested devices.

Fig. 8 Model of CYW43455
pairing procedure. Labels are
abbreviated and summarized.
A complete model is available
online [14]

q0

q1

q2

q3

q4

q5

pairing req/
PAIRING RSP

sm confirm/
SM CONFIRM

sm random/
SM RANDOM

enc req/
ENC RSP,
START REQ

start enc rsp/
ENC INFO,
MASTER ID,
SIGNING INFO

+/DATA
enc req/REJECT IND

+/DATA
enc req/REJECT IND

+/DATA
enc req/REJECT IND

+/DATA

+/EMPTY

+/EMPTY

Formal Methods in System Design

1 3

4.3 BLE fingerprinting

The comparison of the learned models of the connection procedure shows that all investi-
gated SoCs behave differently. Therefore, it is possible to fingerprint the SoC. The advan-
tage of active automata learning, especially using L∗-based algorithms, is that every input

q0

q1

q2

q3

q4

q5 q6

q8

q9

q10

q7

pairing req/
PAIRING RSPpairing req/

PAIRING RSP

pairing req/
PAIRING RSP

pairing req/
PAIRING RSP

sm confirm/
SM CONFIRM

sm random/
SM RANDOMsm confirm/

SM CONFIRM

enc req/
ENC RSP,
START REQ

start enc rsp/
ENC INFO,
ID ADDR INFO,
ID INFO,
MASTER ID,
SIGNING INFO

enc req/
EMPTY

+/EMPTY

+/EMPTY

start enc rsp/
ENC INFO,
ID ADDR INFO,
ID INFO,
MASTER ID,
SIGNING INFO

{enc req,start enc rsp}/CTRL
+/EMPTY

enc req/
CTRL

enc req/
CTRL

pairing req/
FAILED

pairing req/
PAIRING RSP

pairing req/
FAILED

enc req/
CTRL

+/+

+/+

+/+

+/+

+/+

+/+

start enc rsp/EMPTY +/EMPTY

Fig. 9 Model learned of CC2640R2 pairing procedure. For clarity, some transitions are not displayed. The
complete model is available online [14]

 Formal Methods in System Design

1 3

is queried in each state to uniquely identify a state of the model. The collected query infor-
mation can then be used to fingerprint the system. A closer look at the connection proce-
dure models shows that even short input sequences sufficiently fingerprint the SoC.

Even if random testing might be faster in the generation of a fingerprinting sequence
for the investigated case study subjects. Still there exists many advantages in learning the
behavioral model of the BLE device for fingerprinting. The learned behavioral models sup-
port the explainability of the found fingerprinting sequence. For example, the models illus-
trate in which state the models differ. An additional advantage of learning the model is that
new fingerprinting sequences can be retrieved offline. For example, if we want to extend
our set of investigated devices, we only learn the model of the new device. We can then
check if the fingerprinting sequence is still valid to characterize uniquely all investigated
devices. If not, we can use the learned models to generate a new fingerprinting sequence.
This can be done offline, i.e., no active interaction with the BLE devices is required.

Lee and Yannakakis [24] discuss the conformance testing problem, also referred to as
the fault-detection problem. To test the conformance between two systems, they define
a so-called checking sequence which is an input sequence that generates a different out-
put sequence on both systems. In fingerprinting, we aim at generating such a checking
sequence for a set of systems, where the output sequence should be unique for every device.

To generate such a checking sequence, we utilized the data structure that the learner
generated during learning to build the hypothesis. Table 5 shows the observable outputs for
each input after performing the initial connection request, i.e., the table shows the outputs
that identify the state for the corresponding SoC. We determined that the set of observable
outputs after an initial connection request is different for every SoC.

A closer look at the observable outputs shows that a combination of only two observ-
able outputs is enough to identify the SoC. We highlight in Table 5 potential output combi-
nations that depict the fingerprint of an SoC. We note that also other output combinations
are possible. We can now use the corresponding inputs to generate a single output query
that uniquely identifies one of our investigated SoCs. Under the consideration that a scan
request resets the SoC, we define the fingerprinting sequence for the six SoCs output query
as follows:

The execution of this output query leads to a different observed output sequence for each
of the five investigated SoCs. For example, the corresponding output sequence for the
nRF52832 is

whereas the sequence for the CC2650 is

The proposed manual analysis serves as a proof of concept that active automata learning
can be used for fingerprinting BLE SoCs. Obviously, the found input sequences for fin-
gerprinting are only valid for the given SoCs. For other SoCs, a new model for every SoC
should be learned to identify a possibly extended set of input sequences for fingerprinting.
However, we recommend replacing the manual analysis with an automatic conformance
testing technique between the models akin to Lee and Yannakakis [24] or Tappler et al. [8].

����_��� ⋅ ����������_��� ⋅ �������_��� ⋅ ����_��� ⋅ ����������_��� ⋅ �������_���

��� ⋅ ��_��� ⋅ ��_�������_��� ⋅ ��� ⋅ ����_���� ⋅ ��_�������_���,

��� ⋅ ����_���� ⋅ ����_���� ⋅ ��� ⋅ ����_���� ⋅ ��_�������_���.

Formal Methods in System Design

1 3

Ta
bl

e
5

 T
he

 in
ve

sti
ga

te
d

So
C

s c
an

 b
e

id
en

tifi
ed

 b
y

on
ly

 a
 si

ng
le

 m
od

el
 st

at
e

th
at

 is
 re

ac
he

d
af

te
r p

er
fo

rm
in

g
an

 in
iti

al
 c

on
ne

ct
io

n
re

qu
es

t

Th
e

co
lu

m
ns

 o
f t

he
 ta

bl
e

pr
es

en
t t

he
 o

ut
pu

ts
 th

at
 a

re
 o

bs
er

ve
d

w
he

n
th

e
in

pu
t (

ro
w

) i
s

ex
ec

ut
ed

 in
 th

e
co

nn
ec

tio
n

st
at

e.
 T

he
 o

bs
er

va
bl

e
ou

tp
ut

s
sh

ow
 th

at
 o

nl
y

tw
o

in
pu

ts
 a

re

re
qu

ire
d

to
 d

ist
in

gu
is

h
th

e
So

C
s

Th
e

bo
ld

 o
ut

pu
ts

 d
ist

in
gu

is
h

th
e

di
ffe

re
nt

 d
ev

ic
es

. W
e

ob
se

rv
e

fiv
e

di
ffe

re
nt

 o
ut

pu
ts

 w
he

n
pe

rfo
rm

in
g

a
fe

at
ur

e
re

sp
on

se
. T

o
di

sti
ng

ui
sh

 th
e

si
xt

h
de

vi
ce

, w
e

co
ul

d
 p

er
fo

rm

ei
th

er
 a

 v
er

si
on

 re
qu

es
t,

a
le

ng
th

 re
qu

es
t,

or
 a

 le
ng

th
 re

sp
on

se

��
��
�
��
_
��
�

�
��
��
�
�
_
��
�

��
�
�
��
_
��
�

��
�
�
��
_
��
�

C
C

26
40

R
2

B
TL

E_
D

A
TA

BT

LE
_D

AT
A

LL

_L
EN

G
TH

_R
SP

BT
LE

_D
AT

A

C
C

26
50

B
TL

E_
D

A
TA

LL

_V
ER

SI
O

N
_I

N
D

LL
_U

N
K

N
O

W
N

_R
SP

LL
_U

N
K

N
O

W
N

_R
SP

C
C

26
52

R
1

LL
_L

EN
G

TH
_R

EQ
LL

_V
ER

SI
O

N
_I

N
D

LL
_L

EN
G

TH
_R

S
B

TL
E_

D
A

TA

C
Y

B
LE

-4
16

04
5-

02
 L

L_
R

EJ
EC

T_
IN

D
LL

_V
ER

SI
O

N
_I

N
D

LL
_U

N
K

N
O

W
N

_R
SP

LL
_U

N
K

N
O

W
N

_R
SP

C
Y

W
43

45
5

AT
T_

M
TU

_R
EQ

LL
_V

ER
SI

O
N

_I
N

D
LL

_L
EN

G
TH

_R
S

LL
_R

EJ
EC

T_
IN

D
nR

F5
28

32
LL

_U
N

K
N

O
W

N
_R

SP
LL

_V
ER

SI
O

N
_I

N
D

LL
_L

EN
G

TH
_R

S
B

TL
E_

D
A

TA

 Formal Methods in System Design

1 3

5 Related work

Celosia and Cunche [33] also investigated fingerprinting BLE devices, however, their pro-
posed methodology is based on the Generic Attribute Profile (GATT), whereas our tech-
nique also operates on different layers, e.g., the Link Layer (LL) or Security Manager
(SM), of the BLE protocol stack. Their proposed fingerprinting method is based on a large
dataset containing information that can be obtained from the GATT profile, like services
and characteristics.

Argyros et al. [34] discuss the combination of active automata learning and differential
testing to fingerprint the SULs. They propose a framework where they first learn symbolic
finite automata of different implementations and then automatically analyze differences
between the learned models. They evaluated their technique on implementations of TCP,
web application firewalls, and web browsers. A similar technique was proposed by Tap-
pler et al. [8] investigating the Message Queuing Telemetry Transport (MQTT) protocol.
However, their motivation was not to fingerprint MQTT brokers, but rather test for incon-
sistencies between the learned models. These found inconsistencies show discrepancies to
the MQTT specification. Following an akin idea, but motivated by security testing, several
communication protocols like TLS [5], TCP [6], SSH [7] or DTLS [10] have been learn-
ing-based tested. In the literature, these techniques are denoted as protocol state fuzzing.
To the best of our knowledge, none of these techniques interacted with an implementation
on an external physical device, but rather interacted via localhost or virtual connections
with the SULs.

One protocol state fuzzing technique on physical devices was proposed by Stone et al.
[9]. They detected security vulnerabilities in the 802.11 4-Way handshake protocol by test-
ing Wi-Fi routers. Aichernig et al. [35] propose an industrial application for learning-based
testing of measurement devices in the automotive industry. Both case studies emphasize
our observation that non-deterministic behavior hampers the inference of behavioral mod-
els via active automata learning. Other physical devices that have been learned are bank
cards [36] and biometric passports [37]. The proposed techniques use a USB-connected
smart card reader to interact with the cards. Furthermore, Chalupar et al. [38] used Lego®
to create an interface to learn the model of a smart card reader. In the context of protocol
fuzzing, we showed in a follow-up work [15] of this article that the learned BLE models
can be used to reveal robustness issues in BLE devices.

6 Conclusion

6.1 Summary

In this article, we presented a case study on learning-based testing of the BLE protocol.
The case study aimed to evaluate learning-based testing in a practical setup. For this, we
proposed a general learning architecture for BLE devices. The proposed architecture ena-
bled the inference of a model that describes the behavior of a BLE protocol implementa-
tion. We evaluated our presented learning framework in a case study consisting of six BLE
devices. The results of the case study showed that the active learning of a behavioral model
is possible in a practicable amount of time. However, our evaluation showed that exten-
sions to state-of-the-art learning algorithms, such as including error-handling procedures,

Formal Methods in System Design

1 3

were required for successful model inference. By using learning-based testing, we revealed
that one device crashes on the execution of an in-depth testing sequence. Furthermore, the
learned models depicted that implementations of the BLE stack vary significantly from
device to device. This observation confirmed our hypothesis that active automata learning
enables fingerprinting of black-box systems.

6.2 Discussion

We successfully applied active automata learning to reverse engineer the behavioral
models of BLE devices. We experienced challenges in creating a reliable and general
learning framework to learn a behavioral model of a wireless protocol implemented on
a physical device. To learn deterministic models, we needed to repeat executions on
the SUL. Especially, the required guarantee of a reliable reset created issues. Another
possibility to overcome this issue would have been to use a resetless learning algorithm
as proposed by Rivest and Schapire [29]. However, packet loss and delayed responses
still present a problem in such algorithms, since we might assume that we are in the
wrong state. Hence, these algorithms would also require countermeasures against non-
deterministic observations. The advantage is that BLE interface creation only needs to
be done once. Our proposed framework, which is also publicly available [14], can now
be used for learning the behavioral models of many BLE devices. Our presented learn-
ing results show that in practice the scalability of active automata learning not only
depended on the efficiency of the underlying learning algorithm but also on the over-
head due to SUL interaction. However, once this interface was created, active autom-
ata learning successfully revealed a robustness issue in a tested BLE device. All of the
learned models show behavioral differences in the BLE protocol stack implementations.
Therefore, we can use active automata learning to fingerprint the underlying SoC of a
black-box BLE device. The possibility to fingerprint the BLE could be a possible secu-
rity issue since it enables an attacker to exploit specific vulnerabilities, e.g., from a BLE
vulnerability collection like SweynTooTh [3]. Compared to the BLE fingerprinting tech-
nique of Celosia and Cunche [33], our proposed technique is data and time-efficient.
Instead of collecting 13 000 data records over five months, we can learn the models
within hours.

6.3 Future work

Our first investigation of the security-critical behavior of BLE devices could successfully
reveal robustness issues via active automata learning. Despite the found robustness issue,
the learned models do not show any security vulnerabilities. However, for future work, we
plan to consider additional functionality of the BLE protocol stack, e.g., the secure pair-
ing procedure. Considering the public/private key-exchange procedure might reveal further
security issues.

Our proposed method was inspired by the work of Garbelini et al. [3] since their pre-
sented fuzz-testing technique demonstrated that model-based testing can be applied to BLE
devices. Instead of creating the model manually, we showed that learning a behavioral
model of the BLE protocol implemented on a physical device is possible. In recent work
[15], we extended our proposed learning framework for learning-based fuzzing of the BLE
protocol. For this, we used our learned models of the connection procedure to generate

 Formal Methods in System Design

1 3

test cases for fuzzing. Our proposed technique successfully revealed several issues in the
implementation of the BLE protocol. We are currently working on extending this technique
for learning-based fuzzing the BLE pairing procedure.

We find that the non-deterministic behavior of the BLE devices hampered the learning
of deterministic models. Instead of workarounds to overcome non-deterministic behavior,
we could learn a non-deterministic model. We already applied non-deterministic learning
to the MQTT protocol [39]. Following a similar idea, we could learn a non-deterministic
model of the BLE protocol.

Acknowledgements This work is funded by the TU Graz LEAD project Dependable Internet of Things in
Adverse Environments, by the LearnTwins project (No 880852) from the Austrian Research Promotion Agency
(FFG), and by AIDOaRt project (grant agreement No 101007350) from the ECSEL Joint Undertaking (JU).
The JU receives support from the European Union’s Horizon 2020 research and innovation programme and
Sweden, Austria, Czech Republic, Finland, France, Italy, and Spain. We would like to thank Maximilian Schuh
for providing support for the BLE devices and the authors of the SweynTooth paper for creating an open-
source BLE interface. Furthermore, we thank the anonymous reviewers for their useful remarks.

Funding Open access funding provided by Graz University of Technology.

Declarations

Conflict of interest The datasets generated during and/or analysed during the current study are available in
the https:// github. com/ apfer scher/ ble- learn ing repository.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bluetooth SIG: Market update. https:// www. bluet ooth. com/ 2022- market- update/. Accessed: 2022-10-20
 2. Le KT (2021) Bluetooth Low Energy and the automotive transformation. https:// www. ti. com/ lit/ wp/ sway0 08/

sway0 08. pdf. Accessed: 29 Dec 2021
 3. Garbelini ME, Wang C, Chattopadhyay S, Sun S, Kurniawan E (2020) SweynTooth: Unleashing mayhem

over Bluetooth Low Energy. In: Gavrilovska, A., Zadok, E. (eds.) 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, pp. 911–925. USENIX Association, Virtual. https:// www. usenix. org/ confe
rence/ atc20/ prese ntati on/ garbe lini

 4. Aichernig BK, Mostowski W, Mousavi MR, Tappler M, Taromirad M (2018) Model learning and model-
based testing. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software
Analysis: Potentials and Limits - International Dagstuhl Seminar 16172, Revised Papers. Lecture Notes in
Computer Science, vol. 11026, pp. 74–100. Springer, Dagstuhl Castle, Germany. https:// doi. org/ 10. 1007/
978-3- 319- 96562-8_3

 5. de Ruiter J, Poll E (2015) Protocol state fuzzing of TLS implementations. In: Jung, J., Holz, T. (eds.) 24th
USENIX Security Symposium, USENIX Security 15, pp. 193–206. USENIX Association, Washington,
D.C., USA. https:// www. usenix. org/ confe rence/ useni xsecu rity15/ techn ical- sessi ons/ prese ntati on/ de- ruiter

 6. Fiterau-Brostean P, Janssen R, Vaandrager FW (2016) Combining model learning and model checking to
analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification - 28th
International Conference, CAV 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9780,
pp. 454–471. Springer, Toronto, ON, Canada. https:// doi. org/ 10. 1007/ 978-3- 319- 41540-6_ 25

 7. Fiterau-Brostean P, Lenaerts T, Poll E, de Ruiter J, Vaandrager FW, Verleg P (2017) Model learning and
model checking of SSH implementations. In: Erdogmus, H., Havelund, K. (eds.) Proceedings of the 24th

https://github.com/apferscher/ble-learning
http://creativecommons.org/licenses/by/4.0/
https://www.bluetooth.com/2022-market-update/
https://www.ti.com/lit/wp/sway008/sway008.pdf
https://www.ti.com/lit/wp/sway008/sway008.pdf
https://www.usenix.org/conference/atc20/presentation/garbelini
https://www.usenix.org/conference/atc20/presentation/garbelini
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-319-41540-6_25

Formal Methods in System Design

1 3

ACM SIGSOFT International SPIN Symposium on Model Checking of Software, pp. 142–151. ACM,
Santa Barbara, CA, USA. https:// doi. org/ 10. 1145/ 30922 82. 30922 89

 8. Tappler M, Aichernig BK, Bloem R (2017) Model-based testing IoT communication via active automata
learning. In: 2017 IEEE International Conference on Software Testing, Verification and Validation, ICST
2017, Tokyo, Japan, March 13-17, 2017, pp. 276–287. IEEE Computer Society, Tokyo, Japan. https:// doi.
org/ 10. 1109/ ICST. 2017. 32

 9. Stone CM, Chothia T, de Ruiter J (2018) Extending automated protocol state learning for the 802.11 4-way
handshake. In: López, J., Zhou, J., Soriano, M. (eds.) Computer Security - 23rd European Symposium on
Research in Computer Security, ESORICS 2018, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 11098, pp. 325–345. Springer, Barcelona, Spain. https:// doi. org/ 10. 1007/ 978-3- 319- 99073-6_ 16

 10. Fiterau-Brostean P, Jonsson B, Merget R, de Ruiter J, Sagonas K, Somorovsky J (2020) Analysis of DTLS
implementations using protocol state fuzzing. In: Capkun, S., Roesner, F. (eds.) 29th USENIX Security
Symposium, USENIX Security 2020, pp. 2523–2540. USENIX Association, Virtual Event. https:// www.
usenix. org/ confe rence/ useni xsecu rity20/ prese ntati on/ fiter au- brost ean

 11. Tappler M, Aichernig BK, Larsen KG, Lorber F (2019) Time to learn - Learning timed automata from
tests. In: André, É., Stoelinga, M. (eds.) Formal Modeling and Analysis of Timed Systems - 17th Inter-
national Conference, FORMATS 2019, Proceedings. Lecture Notes in Computer Science, vol. 11750, pp.
216–235. Springer, Amsterdam, The Netherlands. https:// doi. org/ 10. 1007/ 978-3- 030- 29662-9_ 13

 12. Aichernig BK, Pferscher A, Tappler M (2020) From passive to active: Learning timed automata efficiently.
In: Lee, R., Jha, S., Mavridou, A. (eds.) NASA Formal Methods - 12th International Symposium, NFM
2020, Proceedings. Lecture Notes in Computer Science, vol. 12229, pp. 1–19. Springer, Moffett Field, CA,
USA. https:// doi. org/ 10. 1007/ 978-3- 030- 55754-6_1

 13. Tappler M, Aichernig BK, Bacci G, Eichlseder M, Larsen KG (2019) L *-based learning of Markov deci-
sion processes. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) Formal Methods - The Next 30 Years
- Third World Congress, FM 2019, Proceedings. Lecture Notes in Computer Science, vol. 11800, pp. 651–
669. Springer, Porto, Portugal. https:// doi. org/ 10. 1007/ 978-3- 030- 30942-8_ 38

 14. Pferscher A Fingerprinting Bluetooth Low Energy via active automata learning. https:// github. com/ apfer
scher/ ble- learn ing. Accessed 31 Mar 2022

 15. Pferscher A, Aichernig BK (2022) Stateful black-box fuzzing of Bluetooth devices using automata learn-
ing. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods - 14th International Sym-
posium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13260, pp. 373–392. Springer, Pasadena, CA, USA. https:// doi. org/ 10. 1007/ 978-3- 031-
06773-0_ 20

 16. Pferscher A, Aichernig BK (2021) Fingerprinting Bluetooth Low Energy devices via active automata
learning. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) Formal Methods - 24th International Sym-
posium, FM 2021, Proceedings. Lecture Notes in Computer Science, vol. 13047, pp. 524–542. Springer,
Virtual Event. https:// doi. org/ 10. 1007/ 978-3- 030- 90870-6_ 28

 17. Isberner M, Howar F, Steffen B (2015) The open-source LearnLib - A framework for active automata
learning. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification - 27th International Con-
ference, CAV 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 487–495.
Springer, San Francisco, CA, USA. https:// doi. org/ 10. 1007/ 978-3- 319- 21690-4_ 32

 18. Muškardin E, Aichernig BK, Pill I, Pferscher A, Tappler M (2022) AALpy: an active automata learning
library. Innov Syst Softw Eng 18(3):417–426. https:// doi. org/ 10. 1007/ s11334- 022- 00449-3

 19. Aichernig BK, Muskardin E, Pferscher A (2022) Active vs. passive: A comparison of automata learn-
ing paradigms for network protocols. Comput Res Repos abs/2209.14031 2209.14031. https:// doi. org/ 10.
48550/ arXiv. 2209. 14031

 20. Angluin D (1987) Learning regular sets from queries and counterexamples. Inf Comput 75(2):87–106.
https:// doi. org/ 10. 1016/ 0890- 5401(87) 90052-6

 21. Margaria T, Niese O, Raffelt H, Steffen B (2004) Efficient test-based model generation for legacy reactive
systems. In: Ninth IEEE International High-Level Design Validation and Test Workshop 2004, 2004, pp.
95–100. IEEE Computer Society, Sonoma Valley, CA, USA. https:// doi. org/ 10. 1109/ HLDVT. 2004. 14312
46. https:// ieeex plore. ieee. org/ xpl/ conho me/ 9785/ proce eding

 22. Niese O (2003) An integrated approach to testing complex systems. PhD thesis, Technical University of
Dortmund, Germany. https://d- nb. info/ 96971 7474/ 34

 23. Shahbaz M, Groz R (2009) Inferring Mealy machines. In: Cavalcanti, A., Dams, D. (eds.) FM 2009, Pro-
ceedings. Lecture Notes in Computer Science, vol. 5850, pp. 207–222. Springer, Eindhoven, The Nether-
lands. https:// doi. org/ 10. 1007/ 978-3- 642- 05089-3_ 14

 24. Lee D, Yannakakis M (1996) Principles and methods of testing finite state machines-a survey. Proc IEEE
84(8):1090–1123. https:// doi. org/ 10. 1109/5. 533956

https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-319-99073-6_16
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-30942-8_38
https://github.com/apferscher/ble-learning
https://github.com/apferscher/ble-learning
https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.48550/arXiv.2209.14031
https://doi.org/10.48550/arXiv.2209.14031
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1109/HLDVT.2004.1431246
https://ieeexplore.ieee.org/xpl/conhome/9785/proceeding
https://d-nb.info/969717474/34
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1109/5.533956

 Formal Methods in System Design

1 3

 25. Cho CY, Babic D, Shin ECR, Song D (2010) Inference and analysis of formal models of botnet command
and control protocols. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, Octo-
ber 4-8, 2010, pp. 426–439. ACM, Chicago, Illinois, USA. https:// doi. org/ 10. 1145/ 18663 07. 18663 55

 26. Aarts F, Jonsson B, Uijen J, Vaandrager FW (2015) Generating models of infinite-state communication
protocols using regular inference with abstraction. Form Meth Syst Design 46(1):1–41. https:// doi. org/ 10.
1007/ s10703- 014- 0216-x

 27. Bluetooth SIG: Bluetooth core specification v5.3. Standard, Bluetooth SIG (2021). https:// www. bluet ooth.
com/ speci ficat ions/ specs/ core- speci ficat ion-5- 3/

 28. Murphy S (1999) The advanced encryption standard (AES). Inf Secur Tech Rep 4(4):12–17. https:// doi.
org/ 10. 1016/ S1363- 4127(99) 80083-1

 29. Rivest RL, Schapire RE (1993) Inference of finite automata using homing sequences. Inf Comput
103(2):299–347. https:// doi. org/ 10. 1006/ inco. 1993. 1021

 30. Howar F, Isberner M, Merten M, Steffen B (2012) LearnLib tutorial: From finite automata to register
interface programs. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Veri-
fication and Validation. Technologies for Mastering Change - 5th International Symposium, ISoLA 2012,
Heraklion, Crete, Greece, October 15-18, 2012, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 7609, pp. 587–590. Springer, Heraklion, Crete, Greece. https:// doi. org/ 10. 1007/ 978-3- 642- 34026-0_
43

 31. S, R.R., R R, Moharir M, G S (2018) Scapy - a powerful interactive packet manipulation program. In:
2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), pp. 1–5 .
https:// doi. org/ 10. 1109/ ICNEWS. 2018. 89039 54

 32. Garbelini ME, Wang C, Chattopadhyay S, Sun S, Kurniawan E SweynTooth - Unleashing Mayhem over
Bluetooth Low Energy. https:// github. com/ Mathe us- Garbe lini/ sweyn tooth_ bluet ooth_ low_ energy_ attac ks.
Accessed: 2021-05-05

 33. Celosia G, Cunche M (2019) Fingerprinting Bluetooth-Low-Energy devices based on the generic attribute
profile. In: Liu, P., Zhang, Y. (eds.) Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things, IoT S &P@CCS 2019, pp. 24–31. ACM, London, UK. https:// doi. org/
10. 1145/ 33385 07. 33586 17

 34. Argyros G, Stais I, Jana S, Keromytis AD, Kiayias A (2016) SFADiff: Automated evasion attacks and
fingerprinting using black-box differential automata learning. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1690–1701. ACM, Vienna, Austria. https:// doi. org/ 10. 1145/ 29767 49. 29783
83

 35. Aichernig BK, Burghard C, Korosec, R (2019) Learning-based testing of an industrial measurement
device. In: Badger, J.M., Rozier, K.Y. (eds.) NASA Formal Methods - 11th International Symposium,
NFM 2019, Proceedings. Lecture Notes in Computer Science, vol. 11460, pp. 1–18. Springer, Houston,
TX, USA. https:// doi. org/ 10. 1007/ 978-3- 030- 20652-9_1

 36. Aarts F, de Ruiter J, Poll E (2013) Formal models of bank cards for free. In: Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013 Workshops Proceedings, pp.
461–468. IEEE Computer Society, Luxembourg, Luxembourg. https:// doi. org/ 10. 1109/ ICSTW. 2013. 60

 37. Aarts F, Schmaltz J, Vaandrager FW (2010) Inference and abstraction of the biometric passport. In: Mar-
garia, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification, and Validation - 4th
International Symposium on Leveraging Applications, ISoLA 2010, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 6415, pp. 673–686. Springer, Heraklion, Crete, Greece. https:// doi. org/ 10. 1007/
978-3- 642- 16558-0_ 54

 38. Chalupar G, Peherstorfer S, Poll E, de Ruiter J (2014) Automated reverse engineering using Lego®. In:
Bratus, S., Lindner, F.F. (eds.) 8th USENIX Workshop on Offensive Technologies, WOOT ’14. USENIX
Association, San Diego,CA, USA. https:// www. usenix. org/ confe rence/ woot14/ works hop- progr am/ prese
ntati on/ chalu par

 39. Pferscher A, Aichernig BK (2020) Learning abstracted non-deterministic finite state machines. In: Casola,
V., Benedictis, A.D., Rak, M. (eds.) Testing Software and Systems - 32nd IFIP WG 6.1 International Con-
ference, ICTSS 2020, Proceedings. Lecture Notes in Computer Science, vol. 12543, pp. 52–69. Springer,
Naples, Italy. https:// doi. org/ 10. 1007/ 978-3- 030- 64881-7_4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/1866307.1866355
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://doi.org/10.1016/S1363-4127(99)80083-1
https://doi.org/10.1016/S1363-4127(99)80083-1
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-642-34026-0_43
https://doi.org/10.1007/978-3-642-34026-0_43
https://doi.org/10.1109/ICNEWS.2018.8903954
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://doi.org/10.1145/3338507.3358617
https://doi.org/10.1145/3338507.3358617
https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1007/978-3-030-20652-9_1
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar
https://doi.org/10.1007/978-3-030-64881-7_4

	Fingerprinting and analysis of Bluetooth devices with automata learning
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mealy machines
	2.2 Active automata learning
	2.3 Bluetooth Low Energy

	3 Learning setup
	3.1 Learning algorithm
	3.2 Learning interface
	3.2.1 Guarantee reliable resets
	3.2.2 Handling non-determinism

	3.3 Mapper
	3.4 BLE central
	3.5 BLE peripheral

	4 Evaluation
	4.1 BLE devices
	4.2 BLE Learning
	4.2.1 Connection procedure evaluation
	4.2.2 Pairing procedure evaluation

	4.3 BLE fingerprinting

	5 Related work
	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future work

	Acknowledgements
	References

