
WOGAN at the SBST 2022 CPS Tool Competition
Jarkko Peltomäki

Åbo Akademi University
Turku, Finland

jarkko.peltomaki@abo.fi

Frankie Spencer
Åbo Akademi University

Turku, Finland
frankie.spencer@abo.fi

Ivan Porres
Åbo Akademi University

Turku, Finland
ivan.porres@abo.fi

ABSTRACT
WOGAN is an online test generation algorithm based on Wasser-
stein generative adversarial networks. In this note, we present how
WOGAN works and summarize its performance in the SBST 2022
CPS tool competition concerning the AI of a self-driving car.
ACM Reference Format:
Jarkko Peltomäki, Frankie Spencer, and Ivan Porres. 2022. WOGAN at the
SBST 2022 CPS Tool Competition. In The 15th Search-Based Software Testing
Workshop (SBST’22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3526072.3527535

1 SBST 2022 CPS TOOL COMPETITION
The SBST 2022 CPS tool competition is concerned with finding
road scenarios that cause the AI of the BeamNG.tech driving simu-
lator to drive a car out of its designated lane. The organizers of the
competition performed two experiments in which the competition
entries were compared according to three metrics: efficiency, effec-
tiveness, and failure-inducing test diversity. The BeamNG.AI was
used in the first experiment while the DAVE-2 AI was used in the
second. Complete details on the simulator, road scenarios, the AIs,
and experiment results are found in the competition report [3].

2 ABOUTWOGAN
Here we provide a brief explanation how WOGAN works. A more
complete description is found in [4].

We consider an input road to the BeamNG.tech simulator as a
test, and we call the output of the test its fitness. We chose the fitness
to be the maximum percentage of the body of the car that is out of
the boundaries of its lane during the simulation (in short BOLP). In
the experiments of the competition report [3], tests were considered
failed if BOLP was over 0.85 (BeamNG.AI) or 0.10 (DAVE-2).

The central idea is to use a generative machine learning model
to generate tests with high fitness. We chose to train a Wasserstein
generative adversarial network (WGAN) which is capable of pro-
ducing diverse samples from its target distribution [1]. Since we
lack training data in advance, we need to train the WGAN online.
Our approach is to first do a random search to obtain an initial
training data for the WGAN and then augment this training data
by executing tests generated by the WGAN which are estimated to
have high fitness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBST’22, May 9, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9318-8/22/05. . . $15.00
https://doi.org/10.1145/3526072.3527535

The initial random search produces a training data (𝑡𝑖 , 𝑓𝑖), 𝑖 =
1, . . . , 𝑁 , of tests 𝑡𝑖 and fitnesses 𝑓𝑖 . The WGAN, say 𝐺 , is trained
with tests of high fitness (what “high” means is explained in [4]).
In order to find a new candidate test, the WGAN 𝐺 is sampled for
new tests. In order to choose the best candidate test, we employ
an analyzer 𝐴 which is a neural network trained to learn the map
from tests to fitnesses (the collected training data enables us to
do so). Thus 𝐴 acts as a surrogate model for the simulator, and
by using it we avoid costly executions on the simulator. We select
the candidate test 𝑡 with the highest estimated fitness and execute
it on the simulator to find its true fitness 𝑓 . Finally we add (𝑡, 𝑓)
to the training data, retrain the models, and repeat the preceding
procedure until the test budget is exhausted. The tests of the final
training data can be considered as a test suite for the simulator.

Intuitively our WOGAN algorithm should be able to find tests
with high fitness. As more training data is available, the generator
𝐺 should be more capable of generating high-fitness tests and the
analyzer 𝐴 should be more accurate in assessing test fitness. The
experiments described in [4] and the experiments of the competition
report [3] experimentally validate this intuition.

Using WOGAN requires choosing hyperparameters. For the tool
competition, we used the same hyperparameters as described in [4,
Sec. 3.1]. Most importantly, we used 20% of the execution budget
for random search, and we always generate roads defined by ex-
actly 6 points (this is an arbitrary decision). For more on the input
representation and normalization, see [4, Sec. 2.1].

3 RESULTS AND THEIR INTERPRETATION
Here we summarize the results of the experiments of [3]. The
metrics considered here are efficiency, effectiveness, and failure-
inducing test diversity; see [3] for their more elaborate definitions.

Efficiency. As written in [3], test generation efficiency is measured
as the time spent to generate tests. In the experiments, two time
budgets are specified: generation budget (1 h) and simulation budget
(2 h). The latter is the time used for running the simulator while
the generation budget accounts for the remaining time used.

WOGAN is the most efficient tool in the above sense: it uses least
time to propose a new test [3]. In fact, it uses one magnitude less
time than the other tools; see Figure 1. We believe that this is mainly
due to the fact thatWOGAN is not a traditional SBSE algorithm. The
actual search for a new test occurs when the weights of the neural
networks are adjusted. After this, candidate tests are sampled and
analyzed which amounts to few forward passes of neural networks.
These operations run efficiently on modern hardware especially
since we have very little training data and small networks.

Since WOGAN does not use most of the generation budget, it
would make sense to use more time for generation. More compli-
cated models or ensembles of models could be trained to improve

53

2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)

SBST’22, May 9, 2022, Pittsburgh, PA, USA Jarkko Peltomäki, Frankie Spencer, and Ivan Porres

ADAFRENETIC AMBIEGEN FRENETICV GENRL MBT WOGAN
0

500

1000

1500

2000

2500

3000

3500
BeamNG.AI
DAVE-2

Figure 1: Efficiency (in seconds)

the metrics. In addition, more domain knowledge could be utilized.

Effectiveness. Not all input roads are valid, so a good tool needs
to learn to avoid producing invalid roads. Effectiveness is defined
as the ratio of valid tests over all generated tests [3].

WOGAN generates many invalid tests: roughly 50% of the tests
could not be executed [3]. WOGAN has no built-in notion of a valid
test, so the neural networks used need to learn this by trial and
error. There is no smooth function measuring how close a road is
being valid, so learning the notion validity accurately with a small
training data can be challenging.

The situation could perhaps be improved by introducing an ad-
ditional validator classifier model, but we did not experiment with
this. We do not view this notion of effectiveness particularly im-
portant as an efficient validator is provided in the simulation suite
meaning WOGAN could validate a candidate road internally before
proposing it as a test being simulated. This way it could achieve
a perfect effectiveness with 0 invalid tests. This was also noted in
the competition note for Frenetic 2021 [2].

Failure-Inducing Test Diversity. In the BeamnNG.AI experiment
WOGAN generated a large number of failed tests: on average 330.3
(SD 55.8) over 10 repetitions whereas the next best tool, AMBIEGEN,
generated on average 90.4 (SD 12.0) failed tests. The tests generated
by WOGAN were however not as diverse as those generated by
AMBIEGEN (see Figure 2), so WOGAN was ranked second in the
failure-inducing test diversity metric [3].

In the DAVE-2 experiment, WOGAN did not fare that well. It was
ranked third by failure-inducing test diversity, but its performance
was considerably lower than that of AMBIEGEN and FRENETICV;
see Figure 2. WOGAN was able to generate on average 3.1 (SD
1.3) failed tests over 10 repetitions. AMBIEGEN and FRENETICV
respectively achieved the means 15.3 (SD 6.3) and 11.1 (SD 4.5).

We believe the reason for WOGAN’s worse performance in the
DAVE-2 experiment is that the BOLP output of the simulator is not
sensitive enough. We have observed that a randomly chosen road
often has a very low BOLP value in the DAVE-2 setting, and the neu-
ral networks could have trouble learning with so homogeneous data.
We believe we should have considered the distance of the center of

ADAFRENETIC AMBIEGEN FRENETICV GENRL MBT WOGAN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 BeamNG.AI
DAVE-2

Figure 2: Relative map coverage

the car to the edges of the lane. This distance yields information
even when BOLP is 0. One additional factor is hyperparameter
tuning: we mainly used the BeamNG.AI for development. Perhaps
our hyperparameters for BeamNG.AI are subpar for DAVE-2.

We are satisfiedwith the diversity of roads generated byWOGAN.
We relied solely on the ability ofWGAN’s to produce varied samples,
and we did not utilize any domain-specific knowledge. Moreover,
we worked under the assumption that the road diversity metric was
translation and rotation invariant and generated only roads that
initially point to north. This was not the case in the competition.

Frenetic 2021 [2] is a genetic algorithm with domain-specific
mutations which are applied only to failing tests in order to im-
prove solution diversity. Once the algorithm finds a failing test it
can mutate it, e.g., by mirroring. This produces new tests that are
likely to fail and are diverse by construction. It is possible to extend
WOGAN to include such mutations using domain-specific rules. We
conjecture this would increase WOGAN’s failure-inducing test di-
versity metric. We also conjecture that a more varied initial random
search could lead to more diverse failing tests.

ACKNOWLEDGMENTS
We thank the organizers of the SBST competition for creating and
continuing the competition.

This research work has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 101007350.

REFERENCES
[1] M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasserstein generative adversarial

networks. In Proceedings of the 34th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 70). PMLR, 214–223.

[2] E. Castellano et al. 2021. Frenetic at the SBST 2021 Tool Competition. In 2021
IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST).
36–37. https://doi.org/10.1109/SBST52555.2021.00016

[3] A. Gambi, G. Jahangirova, V. Riccio, and F. Zampetti. 2022. SBST tool competition
2022. In 15th IEEE/ACM International Workshop on Search-Based Software Testing,
SBST 2022.

[4] J. Peltomäki, F. Spencer, and I. Porres. 2022. Wasserstein generative adversarial
networks for online test generation for cyber physical systems. In 15th IEEE/ACM
International Workshop on Search-Based Software Testing, SBST 2022. https://doi.
org/10.1145/3526072.3527522

54

