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Abstract—We report on the organization and results of the
third edition of the Cyber-Physical Systems tool competition, held
as part of the SBFT workshop. Six tools (i.e., CRAG, EvoMBT,
RIGAA, RoadSign, Spirale, and WOGAN) competed with the
aim of triggering failures of two autonomous driving agents.

We evaluated the effectiveness of the tools in exposing failures
as well as the diversity of the generated failures. This report
describes our methodology, the competitors, the results, and the
challenges we faced while running the competition experiments.

Index Terms—Autonomous Vehicles, Search-Based Software
Testing

I. INTRODUCTION

Among the huge variety of existing safety-critical Cyber-
Physical Systems (CPSs), self-driving cars are steadily grow-
ing in relevance within the software engineering research
community [1] and industry [2]. Tool competitions offer the
opportunity to benchmark new testing approaches and improve
the state of the art.

For this reason, we organized, for the third consecutive
year, the CPS track within the SBFT Testing Tool Compe-
tition along with the Java Test Case Generation [3] and the
Fuzzing [4] tracks. This edition received six submissions:
CRAG, EvoMBT, RIGAA, RoadSign, Spirale, and WOGAN.
We received the same number of submissions as the previous
edition. Four teams that joined the previous edition improved
their tools for this year’s competition. The other two teams
participated in the competition for the first time confirming
the attractiveness of this competition.

To facilitate the development of new test generators, we
provided the participants an open-source and extensible test
framework [5] together with the documentation on how to
use it (tutorials, instructions, sample driving agents, and test
generators). The test framework encapsulates the definition of
complex driving scenarios and their execution in a simulator.

Since the past edition [6], we updated our test framework to
support the latest version of the BeamNG.tech simulator [7].
We also introduced a more straightforward and comprehensive
failure diversity metric to compare the performance of the
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Fig. 1: A driving task for lane keeping assist systems (left);
test simulation in BeamNG.tech (right).

tools in terms of structural and behavioral features of the
tests. The comparison is done by utilizing feature maps as
proposed by Zohdinasab et al. [8], [9]. As test subjects, we
selected (1) BeamNG.Al, the driving agent included with the
BeamNG.tech simulator, and (2) a DL-based driving agent
based on the Dave-2 architecture proposed by Bojarski et
al. [10]. Both test subjects have been used in previous re-
search [11]-[15].

We compared the competing tools by running them multiple
times on each test subject in order to account for the stochastic
nature of the tools. CRAG by Arcaini and Cetinkaya [16]
achieved the highest feature map coverage for both agents.
RIGAA by Humeniuk et al. [17] and WOGAN by Winsten
and Porres [18] ranked second and third.

II. EXPERIMENTAL COMPARISON
A. Goal

In this competition, we challenged the participants to imple-
ment generators of virtual tests for the CPSs. For simplicity,
we restricted the search space to driving scenarios taking place
in fixed environmental conditions (i.e., sunny day) and road
layouts (i.e., flat roads with two lanes surrounded by grass).

The autonomous agents under test (test subjects) are lane-
keeping assist systems (LKASs). The driving task consists of
driving from the beginning to the end of a given road without
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going off the right lane. The goal of the test generators is to
generate challenging virtual roads that cause the test subjects
to fail at the task, that is, drive off the right lane.

As in Figure 1, the test framework allows a generator to
define virtual roads as sequences of road points (o) on a two-
dimensional map. The test framework interpolates the road
points using cubic splines and considers the first and last road
points as the starting position (A) and the target ((J). The
framework initializes a given road in the simulator, executes
the test subject, and returns the results of the simulation to
the test generator. The test framework ensures that only valid
roads are considered. In particular a given road is valid if:
(1) does not self-intersect; (ii) does not contain overly-sharp
turns; and (iii) is contained in a fixed-size map.

The goal of the challenge is to generate the highest number
of diverse failure-inducing inputs, i.e., valid virtual roads that
cause the ego-car controlled by the agent under test to drive
off the lane. The test infrastructure detects a failure if the part
of the ego-car that is outside of the lane is above a threshold
called OOB tolerance. For instance, the OOB tolerance 0.5
triggers a failure when at least half of the ego-car is outside
of the lane. We label failures as Out of Bound (OOB) episodes.
We limit the time the test generators can use for test generation
and simulation by using a fixed real-time budget.

B. Metrics

For this competition, we designed a metric that measures
how many failure-inducing inputs with diverse features are
found by each tool. Triggering similar failures is unhelpful in
assessing the quality of a driving agent since this likely only
exposes the same issues multiple times [13]. Therefore, we
consider an OOB diversity measure based on both structural
features (characteristics of the road) and behavioral features
(characteristics of the output of the simulator). In particular,
we consider high-level features that meaningfully characterize
the tests. Specifically, we selected the following four features
that have been empirically assessed by Zohdinasab et al. [9]:
Direction Coverage is a structural feature indicating how
many directions the road covers;

Maximum Curvature is a structural feature that quantifies
the smoothness the road as the inverse of its turns’ radiuses;
Standard Deviation of the Steering Angle is a behavioral
feature that measures the standard deviation of the ego-car’s
steering angles collected during simulation;

Mean Lateral Position is a behavioral feature that measures
how close the driving agent drives to the lane margins.

We use these features to define a four-dimensional feature
map where the failure-inducing inputs are positioned based on
their feature values such that similar failure-inducing inputs
occupy the same or neighboring map cells. The cells are
obtained by dividing the range of each feature into 10 intervals.
Such a feature map enables us to measure the OOB coverage
achieved by a test generator hence quantifying how many
diverse failure-inducing inputs it generated. This approach is
inspired by recent work on test generation [8] and has been
used for test selection [19] and as a test diversity metric [20].
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Since the road inputs can be long but only a short part
of them determines an OOB, we compute the considered
features only for the road segment relevant to the triggered
OORB, i.e., 30 meters before and after the OOB location. We
measure the number of cells C'4 covered by all test generators
across all runs on a single test subject. We define the Relative
OOB Coverage of a test generator on its ¢-th run as the ratio
|C;|/|C 4] where C; consists of the cells covered by the test
generator during that run. The tests generators are ranked by
the average Relative OOB Coverage values across all runs.

C. Test Subjects

We evaluated the competing tools using the BeamNG.tech
driving simulator [7], kindly provided to our participants by
BeamNG.GmbH. BeamNG.tech is widely-used in the software
testing literature [11], as it features a soft-body dynamics
simulation based on a spring-mass model that allows accurate
reproduction of physical properties, e.g., vehicle deformation.

We chose two test subjects widely used in the software
testing literature: BEAMNG. AL, the driving agent shipped with
the BeamNG.tech simulator, and DAVE-2, a DL-based driving
agent. The competitors had access to both test subjects, but we
did not disclose our final experimental setup.

BEAMNG.AI is omniscient, i.e., it knows the geometry
of the whole road before the simulation is performed and
leverages this information to plan trajectories so that the ego-
car is driven as close as possible to the speed limit, while
keeping the vehicle as much as possible inside the lane.

DAVE-2 [10] is an end-to-end approach that uses a DL
architecture consisting of a sequence of three convolutional
layers and five fully-connected layers to predict steering angles
from images taken by the on-board camera. DAVE-2 imple-
ments behavioral cloning, i.e., learns how to map images to
steering angles from examples provided by experts. Therefore,
we used only positive examples for training this agent, while
we discarded the image-angle pairs in which the ego-car drove
out of the lane. In particular, we trained DAVE-2 with images
captured by the BeamNG.tech camera paired with steering
angles of the ego-car, automatically collected by a script that
forces BEAMNG.AI to drive at the center of the lane.

D. Tools

We evaluated a total of six tools. Below, we briefly describe
the main characteristics of each of them. More information can
be found in the corresponding reports:

CRAG is an approach based on a combinatorial model
whose parameters are used for determining lengths and cur-
vatures of a road in the Frenet frame representation [16].

EvoMBT [21] is a general purpose model-based tool that
generates test cases from Extended Finite State Machines
(EFSMs) based on model coverage criteria.

RIGAA [17] is an approach that combines reinforcement
learning and evolutionary search to generate test scenarios.

RoadSign [22] combines a seeding approach promoting
diversity with a multi-objective optimization process which
aims to maximize road features which may reveal OOBs.
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Spirale [23] is a search-based testing tool designed to
generate scenarios for testing LKASs.

WOGAN [18] is an online test generation tool based on
Wasserstein generative adversarial networks.

TABLE I: Experiment setups.

Name Map Speed Time 00B
Size Limit Budget Tol.

(m x m) (km/h) (h)
BEAMNG.AI 200 x 200 70 3 0.85
DAVE-2 200 x 200 25 3 0.1

E. Experimental Procedure

We ran each tool 6 times for BEAMNG.AI and 5 times for
DAVE-2. The experiment setups are described in Table I.

The BEAMNG.AI agent has a speed limit of 70 km/h with
an OOB tolerance value of 0.85 and a time budget of 3h of
real time. We executed the DAVE-2 agent with the same time
budget, a speed limit of 25km/h, and an OOB tolerance of
0.1. Thus, the DAVE-2 agent drives more slowly but a lower
tolerance is used to trigger failures.

To ensure a fair comparison, we ran each tool the same
number of times in each experiment setup. We ran the
BEAMNG. AT experiments on a desktop PC running Microsoft
Windows 10 Enterprise and featuring an eight-core Intel i9-
9900K CPU @ 3.60GHz, 64 GB of RAM, and an Nvidia
Quadro RTX 4000 GPU. We collected the data for the DAVE-
2 experiment on a desktop PC running Windows 10 Education
with an Intel 19-10900X CPU, a Nvidia GeForce RTX 3080
GPU, and 64 GB of RAM. For all the experiments, we used
the version v.0.26.2.0 of BeamNG.tech.

III. RESULTS

A. Test Generation Effectiveness and Efficiency

Table II reports the number of generated test cases (#7Cs),
the percentage of valid roads (%Val.), and the number of
failure-inducing inputs (OOBs) produced by each tool (7o0l) in
each configuration (Config). The reported values are averages
over the runs with the same configuration.

We observe that WOGAN generated the highest number
of test cases, being the most efficient test generator in this
competition. Across the configurations, WOGAN generated
nearly twice as many roads as the second best tool Spirale.
However, WOGAN also produced the highest number of
invalid roads (> 50%), which reduces its effectiveness.

In terms of road validity, EvoMBT achieved a perfect
score in both configurations. RoadSign, CRAG, and RIGAA
achieved a comparable validity score (i.e., > 95%).

In both configurations, CRAG produced the highest number
of OOBs, followed by RIGAA. We notice that, using the same
budget, it was easier for the tools to trigger failures of the
BEAMNG.AI agent compared with the DAVE-2 agent.
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TABLE II: Valid and invalid tests generated by the tools.

Config. Tool #TCs % Val. OOBs
BEAMNG.AI CRAG 278.2 95.7 43.3
EvoMBT 294.8 100 13.5
RIGAA 322.7 94.6 30.3
RoadSign 224.3 97.9 1.8
Spirale 428.5 79.5 0.8
WOGAN 735.5 54.2 22.8
DAVE-2 CRAG 134.2 96.1 6.0
EvoMBT 160.8 100 14
RIGAA 184.2 96.8 4.2
RoadSign 103.6 98.5 2.4
Spirale 232.0 80.4 0.2
WOGAN 529.8 52.5 0.4
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Fig. 2: Benchmark results. The box plots report the number
of detected failures (top) and the achieved Relative OOB
Coverage (bottom) in each configuration.

B. Final Scores

Table III reports the final ranking of the tools, computed as
the sum of the Relative Map Coverage for each configuration.

CRAG won this edition of the SBFT CPS Tool Competition,
since it is the tool that reached the highest score in both
configurations. RIGAA ranked second by achieving the second
best score for both configurations. WOGAN reached the third
place mainly because of its good performance for DAVE-2,
where it achieved the third best score.

As shown in Figure 2, the Relative OOB Coverage achieved
by each tool (bottom) follows a similar trend as the distribution
of triggered OOBs (top) in both configurations suggesting that
the tools found quite diverse failures.
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TABLE III: Final ranking. The Relative OOB Coverage values
for each tool and agent. Bold indicates the best values.

Tool BEAMNG.AI DAVE-2 Final Score
CRAG 085 138 222
RIGAA .059 .091 151
WOGAN .006 .064 .070
EvoMBT .020 .043 .062
RoadSign .034 .006 .040
Spirale .003 .003 .006

IV. CONCLUSIONS AND FINAL REMARKS

The SBFT CPS testing tool competition focused on the
challenge of evaluating and comparing test generators for
autonomous driving. In this third edition, six tools competed
by testing two test subjects (i.e., BEAMNG.AI and DAVE-2)
and generated inputs that triggered failures of both systems.
CRAG triggered the highest number of diverse failures thus
winning the competition. RIGAA and WOGAN finished sec-
ond and third, respectively. Compared to the previous edition,
we designed an evaluation metric that takes into account
multiple structural and behavioral features of the tests. For the
next editions, we plan to renew the challenges faced by our
competitors, e.g., by introducing different test subjects such
as Reinforcement Learning based CPS and evaluating their
accuracy and plasticity [24].
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