Chapter 8 EARLY - a tool for real-time security attack detection

Tanwir Ahmad, Dragos Truscan - Åbo Akademi University, Finland Jüri Vain - Tallinn University of Technology, Estonia

Network Intrusion Detection System (IDS)

Identify unauthorized and malicious behavior by observing the network traffic.

Allow network **administrators** take appropriate **preventive measures** to **secure** the network **infrastructure** and the associated **nodes**.

Types of network IDSs

- Anomaly based
 - Differentiate between normal and anomalous network traffic
 - Allow to discover novel attacks

- Signature based
 - Compare network traffic against signatures of known attacks
 - Allows the administrator to deploy specific countermeasures depending of the attack type
 - One challenge is in extracting and defining the signature of a known attack that can detect variations of the attack

Flow-based Network IDSs

Most of the state-of-the-art IDSs utilize network flows for attack detection.

Flow is a **sequence** of packets between 2 endpoints

Packets are grouped into flows based on the:

- Source and destination addresses and ports
- Protocol type
- Time interval

Network IDS

- Extract **flow-based statistical features** by analyzing **all** the packets in a flow such as:
 - total bytes,
 - packets count,
 - IP addresses and ports numbers.

• Learn to identify attacks using those statistical features.

Motivation

- Problem
 - Current IDSs detect attacks by inspecting the complete information about the attack.
 - After the attack has been executed on the system under attack.

- Research Objective
 - Identify network attacks as <u>early as possible</u> by monitoring the network traffic in real-time.
 - Allow to deploy countermeasures **before the attack completes**

Overview of the approach

Stage 1: training

Overview of the approach

Stage 2: monitoring

VeriDevOps

Monitoring Network for Attacks

Flow 1

Monitoring Network for Attacks

Flow 1

Monitoring Network

Flow 1

Monitoring Network for Attacks

Flow ID	Source IP	Destination IP	Length	Prediction	Confidence	Remarks
Flow 3 Flow 2 Flow 1 Flow 0	172.16.0.1 172.16.0.1 172.16.0.1 192.168.10.15	192.168.10.50 192.168.10.50 192.168.10.50 131.253.61.98	2 12 14 5	XSS Brute Force XSS Normal	100.0 100.0 99.0 100.0	ALERT ALERT ALERT

Integration with DevOps Environments

Åbo Akademi University

- Neural network architectures
 - 1- Dimensional Convolution Neural Network
 - Recurrent Neural Network
- Datasets
 - CICIDS-2017
 - MQTT-IoT-IDS-2020

• 1- Dimensional Convolution Neural Network (EARLY_{CNN})

- Parameters: 16,804
- Epoch: 50
- Training time: 10 minutes
- Machine: i9 with RTX 3090

• Recurrent Neural Network (EARLY_{RNN})

- Parameters: 46,404
- Epoch: 50
- Training time: 30 minutes
- Machine: i9 with RTX 3090

Dataset: CIC-IDS2017

Class	Number of Flows	Avg. Flow Length
Normal	27,129	124.39
Brute force	1,507	18.43
XSS	652	11.48
SQL Injection	21	5.71

70% of the data for training and 30% for testing.

10-fold cross-validation to fine-tune the hyper-parameter values and model selection.

Dataset MQTT-IDS-2020

Class	Number of Flows	Avg. Flow Length
Normal	363,495	5.81
Brute force	2,000,211	4.99
Aggressive scan	20,025	2.03
UDP scan	10	1.10
Sparta SSH	1,013,380	19.45

70% of the data for training and 30% for testing.

10-fold cross-validation to fine-tune the hyper-parameter values and model selection.

Evaluation metrics

Precision - What proportion of positive identifications was actually correct?

Recall - What proportion of actual positives was identified correctly?

False positive rate (FPR) - proportion of negative observations wrongly predicted as positive over the total number of negative observations.

Earliness - after how many packets in a flow we can classify an attack

Classification Performance (CICIDS-2017)

	Precision		Recall		FPR	
Class	CNN	RNN	CNN	RNN	CNN	RNN
Normal	0.996	0.996	0.944	<u>0.995</u>	0.054	<u>0.052</u>
Brute force	0.720	<u>0.905</u>	0.828	<u>0.916</u>	0.051	<u>0.003</u>
XSS	0.754	<u>0.823</u>	0.911	<u>0.916</u>	0.008	<u>0.004</u>
SQL Injection	0.343	<u>0.403</u>	0.528	<u>0.733</u>	0.003	<u>0.001</u>

Balanced Accuracy: 0.803 (CNN) < 0.890 (RNN)

Classification Performance (MQTT-IDS-2020)

	Precision		Recall		FPR	
Class	CNN	RNN	CNN	RNN	CNN	RNN
Normal	0.707	<u>0.827</u>	0.584	<u>0.758</u>	0.095	<u>0.053</u>
Brute force	0.979	<u>0.995</u>	0.997	<u>0.999</u>	0.008	<u>0.002</u>
Aggressive scan	0.812	<u>0.938</u>	0.815	<u>0.987</u>	0.055	<u>0.022</u>
UDP scan	0.004	<u>0.092</u>	<u>0.422</u>	0.211	0.038	<u>0.000</u>
Sparta SSH	0.809	<u>0.833</u>	0.778	<u>0.853</u>	0.066	<u>0.058</u>

Balanced Accuracy: 0.719 (CNN) < 0.762 (RNN)

- -

Earliness Performance

Earliness metric

Universitv

$$Earliness = \begin{cases} \frac{T-t}{T-1} & \text{if } T > 1\\ 1 & \text{if } T = 1 \end{cases}$$

T = total number of packets in a given flow

t = minimum number of packets required to correctly predict the class of a given flow

! this metric is only applied to those flows that are correctly classified and $t \leq T$.

Earliness Performance (CICIDS-2017)

Class	Earliness		Avg va	lue of <i>t</i>	Avg. Flow Length
	CNN	RNN	CNN	RNN	
Normal	0.991	<u>0.994</u>	2.11	<u>1.74</u>	124.39
Brute force	<u>0.936</u>	0.931	<u>2.11</u>	2.20	18.43
XSS	<u>0.917</u>	0.886	<u>1.86</u>	2.19	11.48
SQL Injection	0.509	<u>0.712</u>	3.31	<u>2.31</u>	5.71

Both models show the same earliness performance

Earliness Performance (MQTT-IDS-2020)

Class	Earliness		Avg va	lue of <i>t</i>	Avg. Flow Length
	CNN	RNN	CNN	RNN	
Normal	0.708	<u>0.922</u>	2.40	<u>1.03</u>	5.81
Brute force	0.991	<u>0.999</u>	1.03	<u>1.00</u>	4.99
Aggressive scan	0.848	<u>0.974</u>	1.15	<u>1.02</u>	2.03
UDP scan	<u>0.525</u>	0.467	<u>1.04</u>	1.05	1.10
Sparta SSH	0.689	<u>0.778</u>	6.73	<u>5.09</u>	19.45

Prediction time

2 machines: 1 replay and 1 monitoring

- Intel Core i9-10900X CPU, 64 GB of memory, RTX 3090 graphics card, and Ubuntu 20.04
- 1Gb Ethernet connection

${f Dataset} \qquad {f Duratic} (sec)$		Packets re-transmitted	Packet IAT (ms)	Architecture	Prediction time (ms)
CICIDS2017	29 004	$4 \ 074 \ 195$	7.11	$\frac{EARLY_{CNN}}{EARLY_{RNN}}$	0.06
MQTT-IDS-2020	16 614	32 144 887	0.51	$\frac{EARLY_{CNN}}{EARLY_{RNN}}$	4.18 4.30

Conclusion

EARLY detects in real-time while happening with a certain probability

Tool supports two types of classifier architectures, **CNN** and **RNN** for early attack identification

Empirically evaluated our approach on the **CICIDS-2017** and **MQTT-IDS-2020** datasets

CNN smaller models (4x), faster training 3x, faster predictions

RNN more accurate

Achieve a high degree of accuracy by analyzing roughly only 1 to 3 packets

Thank you!

